Robust Localization Based on Mixed-Norm Minimization Criterion

This paper presents robust positioning methods that use range measurements to estimate location parameters. The existing maximum correntropy criterion-based localization algorithm uses only the <inline-formula> <tex-math notation="LaTeX">l_{2} </tex-math></inline-formu...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE access Ročník 10; s. 57080 - 57093
Hlavní autoři: Park, Chee-Hyun, Chang, Joon-Hyuk
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2169-3536, 2169-3536
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper presents robust positioning methods that use range measurements to estimate location parameters. The existing maximum correntropy criterion-based localization algorithm uses only the <inline-formula> <tex-math notation="LaTeX">l_{2} </tex-math></inline-formula> norm minimization. Therefore, the localization performance may not be satisfying because the <inline-formula> <tex-math notation="LaTeX">l_{2} </tex-math></inline-formula> norm minimization is vulnerable to the large error. Therefore, we propose the convex combination of <inline-formula> <tex-math notation="LaTeX">l_{1} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">l_{2} </tex-math></inline-formula> norm because the <inline-formula> <tex-math notation="LaTeX">l_{1} </tex-math></inline-formula> norm minimization is effective in the large noise condition. The mixed-norm maximum Versoria criterion-based unscented Kalman filter, mixed-norm least lncosh unscented Kalman filter, mixed-norm maximum Versoria criterion iterative reweighted least-squares, mixed-norm least lncosh iterative reweighted least squares and closed-form localization approaches are proposed for mixed line-of-sight/ non-line-of-sight environments. The proposed mixed-norm unscented Kalman filter-based algorithms are more superior to the other methods as the line-of-sight noise level increases by the use of the convex combination of <inline-formula> <tex-math notation="LaTeX">l_{1} </tex-math></inline-formula> norm and <inline-formula> <tex-math notation="LaTeX">l_{2} </tex-math></inline-formula> norm. The iterative reweighted least sqaures-based methods employ a weight matrix. The closed-form weighted least squares algorithm has an advantage that its computational complexity is lower than that of other methods. Simulation and experiments illustrate the localization accuracies of the proposed unscented Kalman filter-based methods are found to be superior to those of the other algorithms under large noise level conditions.
AbstractList This paper presents robust positioning methods that use range measurements to estimate location parameters. The existing maximum correntropy criterion-based localization algorithm uses only the <tex-math notation="LaTeX">$l_{2}$ </tex-math> norm minimization. Therefore, the localization performance may not be satisfying because the <tex-math notation="LaTeX">$l_{2}$ </tex-math> norm minimization is vulnerable to the large error. Therefore, we propose the convex combination of <tex-math notation="LaTeX">$l_{1}$ </tex-math> and <tex-math notation="LaTeX">$l_{2}$ </tex-math> norm because the <tex-math notation="LaTeX">$l_{1}$ </tex-math> norm minimization is effective in the large noise condition. The mixed-norm maximum Versoria criterion-based unscented Kalman filter, mixed-norm least lncosh unscented Kalman filter, mixed-norm maximum Versoria criterion iterative reweighted least-squares, mixed-norm least lncosh iterative reweighted least squares and closed-form localization approaches are proposed for mixed line-of-sight/ non-line-of-sight environments. The proposed mixed-norm unscented Kalman filter-based algorithms are more superior to the other methods as the line-of-sight noise level increases by the use of the convex combination of <tex-math notation="LaTeX">$l_{1}$ </tex-math> norm and <tex-math notation="LaTeX">$l_{2}$ </tex-math> norm. The iterative reweighted least sqaures-based methods employ a weight matrix. The closed-form weighted least squares algorithm has an advantage that its computational complexity is lower than that of other methods. Simulation and experiments illustrate the localization accuracies of the proposed unscented Kalman filter-based methods are found to be superior to those of the other algorithms under large noise level conditions.
This paper presents robust positioning methods that use range measurements to estimate location parameters. The existing maximum correntropy criterion-based localization algorithm uses only the <inline-formula> <tex-math notation="LaTeX">l_{2} </tex-math></inline-formula> norm minimization. Therefore, the localization performance may not be satisfying because the <inline-formula> <tex-math notation="LaTeX">l_{2} </tex-math></inline-formula> norm minimization is vulnerable to the large error. Therefore, we propose the convex combination of <inline-formula> <tex-math notation="LaTeX">l_{1} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">l_{2} </tex-math></inline-formula> norm because the <inline-formula> <tex-math notation="LaTeX">l_{1} </tex-math></inline-formula> norm minimization is effective in the large noise condition. The mixed-norm maximum Versoria criterion-based unscented Kalman filter, mixed-norm least lncosh unscented Kalman filter, mixed-norm maximum Versoria criterion iterative reweighted least-squares, mixed-norm least lncosh iterative reweighted least squares and closed-form localization approaches are proposed for mixed line-of-sight/ non-line-of-sight environments. The proposed mixed-norm unscented Kalman filter-based algorithms are more superior to the other methods as the line-of-sight noise level increases by the use of the convex combination of <inline-formula> <tex-math notation="LaTeX">l_{1} </tex-math></inline-formula> norm and <inline-formula> <tex-math notation="LaTeX">l_{2} </tex-math></inline-formula> norm. The iterative reweighted least sqaures-based methods employ a weight matrix. The closed-form weighted least squares algorithm has an advantage that its computational complexity is lower than that of other methods. Simulation and experiments illustrate the localization accuracies of the proposed unscented Kalman filter-based methods are found to be superior to those of the other algorithms under large noise level conditions.
This paper presents robust positioning methods that use range measurements to estimate location parameters. The existing maximum correntropy criterion-based localization algorithm uses only the [Formula Omitted] norm minimization. Therefore, the localization performance may not be satisfying because the [Formula Omitted] norm minimization is vulnerable to the large error. Therefore, we propose the convex combination of [Formula Omitted] and [Formula Omitted] norm because the [Formula Omitted] norm minimization is effective in the large noise condition. The mixed-norm maximum Versoria criterion-based unscented Kalman filter, mixed-norm least lncosh unscented Kalman filter, mixed-norm maximum Versoria criterion iterative reweighted least-squares, mixed-norm least lncosh iterative reweighted least squares and closed-form localization approaches are proposed for mixed line-of-sight/ non-line-of-sight environments. The proposed mixed-norm unscented Kalman filter-based algorithms are more superior to the other methods as the line-of-sight noise level increases by the use of the convex combination of [Formula Omitted] norm and [Formula Omitted] norm. The iterative reweighted least sqaures-based methods employ a weight matrix. The closed-form weighted least squares algorithm has an advantage that its computational complexity is lower than that of other methods. Simulation and experiments illustrate the localization accuracies of the proposed unscented Kalman filter-based methods are found to be superior to those of the other algorithms under large noise level conditions.
Author Park, Chee-Hyun
Chang, Joon-Hyuk
Author_xml – sequence: 1
  givenname: Chee-Hyun
  orcidid: 0000-0002-9739-5277
  surname: Park
  fullname: Park, Chee-Hyun
  organization: School of Electronics Engineering, Hanyang University, Seoul, South Korea
– sequence: 2
  givenname: Joon-Hyuk
  orcidid: 0000-0003-2610-2323
  surname: Chang
  fullname: Chang, Joon-Hyuk
  email: jchang@hanyang.ac.kr
  organization: School of Electronics Engineering, Hanyang University, Seoul, South Korea
BookMark eNpNUNtKAzEQDaLgrV_Ql4LPWzNJNpt9EXTxBlXB6nPIJrOS0m40uwX1603dWpyXOQznMpxjst-GFgkZA50C0PL8sqqu5_Mpo4xNORSF4mqPHDGQZcZzLvf_4UMy6roFTaPSKS-OyMVzqNddP5kFa5b-2_Q-tJMr06GbJPDgP9FljyGuEmz96o9QRd9jTOiUHDRm2eFou0_I6831S3WXzZ5u76vLWWZ5rvrMsdw2sm64LR0tS2otoJTGoChBWsMdCOuoEbRBFDmltrHIQDjpHIBhyE_I_eDrglno9-hXJn7pYLz-PYT4pk3svV2iFoqz2nLFixoEy2XNHIOS1ykxN7WE5HU2eL3H8LHGrteLsI5tel8zWQha5EypxOIDy8bQdRGbXSpQveldD73rTe9623tSjQeVR8SdoiwUCGD8B3zEf5k
CODEN IAECCG
Cites_doi 10.1109/JIOT.2022.3150564
10.1016/j.eswa.2015.02.056
10.1016/j.sigpro.2014.12.020
10.1109/TCSII.2017.2671521
10.1109/WCNC.1999.797838
10.1109/LWC.2021.3109787
10.1109/TWC.2020.2997455
10.1109/IPSN.2005.1440903
10.1016/j.dsp.2014.02.009
10.1109/TVT.2005.861207
10.1109/TSP.2019.2916755
10.1016/j.jappgeo.2015.03.001
10.1109/ICE.2017.8279941
10.1002/SERIES1345
10.1109/TSP.2013.2251341
10.1109/TWC.2014.2314640
10.1109/TAC.2020.3011443
10.1109/TAES.1984.310439
10.1109/WPNC.2013.6533288
10.1155/ASP/2006/43429
10.3390/s16091530
10.1109/LSP.2021.3082329
10.1109/LCOMM.2015.2482979
10.1109/ACCESS.2019.2901940
10.1109/97.554469
10.1109/JSTSP.2009.2028383
10.1109/JPROC.2003.823141
10.1016/j.sigpro.2017.09.019
10.1109/LCOMM.2015.2442580
10.1109/WCNC.2007.296
10.1016/j.jfranklin.2017.10.023
10.1109/LCOMM.2022.3155685
10.1109/VETECF.2003.1285996
10.1109/VTC2021-Spring51267.2021.9449063
10.1109/ACC.2003.1243439
10.1214/aoms/1177704172
10.1109/TSP.2013.2286779
10.1109/TAES.2017.2651684
10.1109/TWC.2021.3105641
10.1109/MSP.2005.1458284
10.1109/TSP.2011.2138702
10.12732/ijpam.v91i3.7
10.1109/TMC.2022.3150758
10.1186/s13634-017-0498-4
10.1109/LWC.2020.3037095
10.1109/TMC.2022.3148338
10.1109/TSP.2011.2152400
10.1109/78.301830
10.1109/TMC.2019.2921537
10.1016/j.sigpro.2019.107348
10.1109/ICUMT54235.2021.9631716
10.1016/j.automatica.2016.10.004
10.1109/ACCESS.2018.2817800
10.1186/s13634-016-0385-4
10.1109/LSP.2015.2437456
10.1109/TWC.2015.2490677
10.1016/j.sigpro.2020.107941
10.1007/s00190-005-0473-y
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2022.3177838
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 57093
ExternalDocumentID oai_doaj_org_article_4832bc3837b14256b2d2193b1e65ab61
10_1109_ACCESS_2022_3177838
9781412
Genre orig-research
GrantInformation_xml – fundername: Institute of Information Communications Technology Planning Evaluation (IITP) Grant funded by the Korea Government [Ministry of Science and Information Communications Technology (MSIT)] (Development of Ultra-High Speech Quality Technology for Remote Multi-Speaker Conference System)
  grantid: 2021-0-00456
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c358t-d25cf6bf3c9d0990cc1e66aae4916ca3d14cd0a40fee4500cfce214d6dd11a2e3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000808032500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:44:20 EDT 2025
Mon Jun 30 04:18:03 EDT 2025
Sat Nov 29 06:32:08 EST 2025
Wed Aug 27 02:24:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-d25cf6bf3c9d0990cc1e66aae4916ca3d14cd0a40fee4500cfce214d6dd11a2e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9739-5277
0000-0003-2610-2323
OpenAccessLink https://ieeexplore.ieee.org/document/9781412
PQID 2674075288
PQPubID 4845423
PageCount 14
ParticipantIDs proquest_journals_2674075288
ieee_primary_9781412
doaj_primary_oai_doaj_org_article_4832bc3837b14256b2d2193b1e65ab61
crossref_primary_10_1109_ACCESS_2022_3177838
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
Wilcox (ref44) 2012
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref60
ref61
References_xml – ident: ref33
  doi: 10.1109/JIOT.2022.3150564
– ident: ref6
  doi: 10.1016/j.eswa.2015.02.056
– ident: ref15
  doi: 10.1016/j.sigpro.2014.12.020
– ident: ref39
  doi: 10.1109/TCSII.2017.2671521
– ident: ref47
  doi: 10.1109/WCNC.1999.797838
– ident: ref36
  doi: 10.1109/LWC.2021.3109787
– ident: ref53
  doi: 10.1109/TWC.2020.2997455
– ident: ref13
  doi: 10.1109/IPSN.2005.1440903
– ident: ref5
  doi: 10.1016/j.dsp.2014.02.009
– ident: ref19
  doi: 10.1109/TVT.2005.861207
– ident: ref27
  doi: 10.1109/TSP.2019.2916755
– ident: ref43
  doi: 10.1016/j.jappgeo.2015.03.001
– ident: ref60
  doi: 10.1109/ICE.2017.8279941
– ident: ref12
  doi: 10.1002/SERIES1345
– ident: ref49
  doi: 10.1109/TSP.2013.2251341
– ident: ref8
  doi: 10.1109/TWC.2014.2314640
– ident: ref28
  doi: 10.1109/TAC.2020.3011443
– ident: ref1
  doi: 10.1109/TAES.1984.310439
– ident: ref9
  doi: 10.1109/WPNC.2013.6533288
– ident: ref14
  doi: 10.1155/ASP/2006/43429
– ident: ref23
  doi: 10.3390/s16091530
– ident: ref41
  doi: 10.1109/LSP.2021.3082329
– ident: ref7
  doi: 10.1109/LCOMM.2015.2482979
– ident: ref57
  doi: 10.1109/ACCESS.2019.2901940
– ident: ref42
  doi: 10.1109/97.554469
– ident: ref45
  doi: 10.1002/SERIES1345
– ident: ref51
  doi: 10.1109/JSTSP.2009.2028383
– ident: ref55
  doi: 10.1109/JPROC.2003.823141
– ident: ref11
  doi: 10.1016/j.sigpro.2017.09.019
– ident: ref10
  doi: 10.1109/LCOMM.2015.2442580
– ident: ref18
  doi: 10.1109/WCNC.2007.296
– ident: ref54
  doi: 10.1016/j.jfranklin.2017.10.023
– ident: ref35
  doi: 10.1109/LCOMM.2022.3155685
– volume-title: Introduction to Robust Estimation and Hypothesis Testing
  year: 2012
  ident: ref44
– ident: ref21
  doi: 10.1109/VETECF.2003.1285996
– ident: ref38
  doi: 10.1109/VTC2021-Spring51267.2021.9449063
– ident: ref56
  doi: 10.1109/ACC.2003.1243439
– ident: ref17
  doi: 10.1214/aoms/1177704172
– ident: ref48
  doi: 10.1109/TSP.2013.2286779
– ident: ref26
  doi: 10.1109/TAES.2017.2651684
– ident: ref37
  doi: 10.1109/TWC.2021.3105641
– ident: ref50
  doi: 10.1109/MSP.2005.1458284
– ident: ref25
  doi: 10.1109/TSP.2011.2138702
– ident: ref52
  doi: 10.12732/ijpam.v91i3.7
– ident: ref29
  doi: 10.1109/TMC.2022.3150758
– ident: ref58
  doi: 10.1186/s13634-017-0498-4
– ident: ref34
  doi: 10.1109/LWC.2020.3037095
– ident: ref32
  doi: 10.1109/TMC.2022.3148338
– ident: ref3
  doi: 10.1109/TSP.2011.2152400
– ident: ref2
  doi: 10.1109/78.301830
– ident: ref30
  doi: 10.1109/TMC.2019.2921537
– ident: ref24
  doi: 10.1016/j.sigpro.2019.107348
– ident: ref31
  doi: 10.1109/ICUMT54235.2021.9631716
– ident: ref22
  doi: 10.1016/j.automatica.2016.10.004
– ident: ref61
  doi: 10.1109/ACCESS.2018.2817800
– ident: ref20
  doi: 10.1186/s13634-016-0385-4
– ident: ref59
  doi: 10.1109/LSP.2015.2437456
– ident: ref4
  doi: 10.1109/TWC.2015.2490677
– ident: ref40
  doi: 10.1016/j.sigpro.2020.107941
– ident: ref46
  doi: 10.1002/SERIES1345
– ident: ref16
  doi: 10.1007/s00190-005-0473-y
SSID ssj0000816957
Score 2.2282023
Snippet This paper presents robust positioning methods that use range measurements to estimate location parameters. The existing maximum correntropy criterion-based...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 57080
SubjectTerms Algorithms
Closed form solutions
Cost function
Criteria
Digital signal processing
distributed information systems
Estimation
Exact solutions
filtering theory
indoor navigation
iterative algorithms
Iterative methods
Kalman filters
Least squares
Line of sight
Localization
Location awareness
Mathematical analysis
Minimization
mobile communication
Noise
Noise level
Noise levels
Optimization
parameter estimation
radio navigation
Robustness
Signal processing algorithms
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA4yPOhB1ClOp_Tg0bIkTdLkImzD4UGHiMJuIb8KO9jJ1ol_vi9tNwYevNhTKCFtvpfkvS9tvofQbYg-VzGZBsJMypSVqeRMpAZGtDC8gCDZ18km8ulUzmbqZSfVV_wnrJEHboAbMBhy1kUeFbcruLDUwyTLLAmCG9sQH5yrHTJVr8GSCMXzVmaIYDUYjsfQIyCElAJPzXMZT6TsuKJasb9NsfJrXa6dzeQYHbVRYjJs3u4E7YXyFB3uaAd20f3rwq5XVfIUnVF7mDIZgU_yCRSe59_Bp1MISKFYzj82FWJmA2hgUZ6h98nD2_gxbZMhpC7jsko95a4Qtsic8vFjlnOAgDAmMAjwnMk8Yc5jw3ARAuMYu8IFSpgX3hNiaMjOUadclOECJaGAqMjhIrPBssJTa1Tug8LB4MzB1UN3G1z0Z6N5oWuugJVuYNQRRt3C2EOjiN22ahSsrm-AGXVrRv2XGXuoG5HfNlJLcRHaQ_2NJXQ7uVaaihxoKKdSXv7Ho6_QQexOs6_SR51quQ7XaN99VfPV8qYeVz_Gmc6k
  priority: 102
  providerName: Directory of Open Access Journals
Title Robust Localization Based on Mixed-Norm Minimization Criterion
URI https://ieeexplore.ieee.org/document/9781412
https://www.proquest.com/docview/2674075288
https://doaj.org/article/4832bc3837b14256b2d2193b1e65ab61
Volume 10
WOSCitedRecordID wos000808032500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5R1EN7AApFXaAohx5JcRzbiS9IsAJxKKuqohI3y4-JtAeyiN2tOPHbGTveFRJcmkM0shzL_vyYhzMzAD8w8lwt2hIrYUuhXVu2UqjS0opWVnYkJIeUbKKZTNq7O_17A07WvjCImH4-w5-RTHf5YeaX0VR2muIzxZTCH5pGDb5aa3tKTCChZZMDC1VMn56PxzQGUgE5J820adrog_KK-aQY_TmpypuTOLGXq-3_69gObGUxsjgf5v0LbGC_C59fBRfcg7M_M7ecL4pfkVtlb8vigphWKIi4mT5hKCcksRLZT-9XFWLqA2pg1n-Fv1eXt-PrMmdLKH0t20UZuPSdcl3tdYi3Xd5XqJS1KEgC9LYOlfCBWcE6RCEZ851HXomgQqgqy7Heh81-1uM3KLAjscmzrnboRBe4s7oJqBlaVnt6RnCygtE8DEExTFImmDYD6iaibjLqI7iIUK-rxojWqYAwNHmDGEFHi_NRX45mKakcD3SY1o4GIa1T1Qj2Iu7rRjLkIzhaTZzJu29uuGpIT5W8bQ_e_-oQPsUODqaUI9hcPC7xO3z0_xbT-eNx0svpffN8eZwW2QtXPM8E
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NSxwxFH-IFmwParWlW62dQ4-OZjJJZnIRdKlYui6lKHgL-XgDe3C2uLvin9-XbHYR2otzCkMmJL98vI_Mez-AbxhlrhZtiZWwpdCuLVspVGlpRSsrO1KSQyKbaMbj9v5e_9qAk3UsDCKmn8_wNBbTXX6Y-kV0lZ2l_EyRUngrMmflaK21RyVSSGjZ5NRCFdNnF8MhjYKMQM7JNm2aNkahvBA_KUt_plX55yxOAuZq93Vd24OdrEgWF8uZfw8b2O_DuxfpBQ_g_PfULWbzYhTlVY63LC5JbIWCCjeTZwzlmHRWKvaTh1WFSH5ADUz7D3B39f12eF1mvoTS17Kdl4FL3ynX1V6HeN_lfYVKWYuCdEBv61AJH5gVrEMUkjHfeeSVCCqEqrIc64-w2U97_AQFdqQ4edbVDp3oAndWNwE1Q8tqT88ATlYwmj_LtBgmmRNMmyXqJqJuMuoDuIxQr6vGnNbpBWFo8hYxgg4X56PFHB1TUjke6DitHQ1CWqeqARxE3NeNZMgHcLSaOJP338xw1ZClKnnbfv7_V19h-_r2ZmRGP8Y_D-Ft7OzSsXIEm_PHBX6BN_5pPpk9HqdF9heDzNAn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Localization+Based+on+Mixed-Norm+Minimization+Criterion&rft.jtitle=IEEE+access&rft.au=Park%2C+Chee-Hyun&rft.au=Chang%2C+Joon-Hyuk&rft.date=2022&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=10&rft.spage=57080&rft.epage=57093&rft_id=info:doi/10.1109%2FACCESS.2022.3177838&rft.externalDocID=9781412
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon