Higher-order time integration through smooth mesh deformation for 3D fluid–structure interaction simulations

In this paper, we present a higher-order accurate in time, partitioned integration scheme (IMEX) for fluid–structure interaction. The scheme is based on a combination of an implicit, L-stable, multi-stage Runge–Kutta scheme and an explicit Runge–Kutta scheme. Fluid and structure dynamics are integra...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of computational physics Ročník 224; číslo 1; s. 414 - 430
Hlavní autori: van Zuijlen, A.H., de Boer, A., Bijl, H.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Amsterdam Elsevier Inc 20.05.2007
Elsevier
Predmet:
ISSN:0021-9991, 1090-2716
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this paper, we present a higher-order accurate in time, partitioned integration scheme (IMEX) for fluid–structure interaction. The scheme is based on a combination of an implicit, L-stable, multi-stage Runge–Kutta scheme and an explicit Runge–Kutta scheme. Fluid and structure dynamics are integrated using the implicit scheme and only the pressure loads acting on the structure are integrated explicitly. For an academic problem we show that mesh optimization functions, which are often necessary in standard mesh deformation algorithms, can have a detrimental effect on the temporal order and accuracy. We use a radial basis function (RBF) interpolation with a thin plate spline to create a smooth displacement field for the whole fluid domain, which does not affect the order of the IMEX time integration scheme. For reasonable accuracies, the IMEX schemes outperform a second-order staggered scheme by a factor of 2–3. As an example for a three-dimensional, real-world problem, a simulation of a transonic wing flutter case, the AGARD 445.6 wing, is performed. For this test case, a clear third-order time accuracy is observed for IMEX3.
AbstractList In this paper, we present a higher-order accurate in time, partitioned integration scheme (IMEX) for fluid-structure interaction. The scheme is based on a combination of an implicit, L-stable, multi-stage Runge-Kutta scheme and an explicit Runge-Kutta scheme. Fluid and structure dynamics are integrated using the implicit scheme and only the pressure loads acting on the structure are integrated explicitly. For an academic problem we show that mesh optimization functions, which are often necessary in standard mesh deformation algorithms, can have a detrimental effect on the temporal order and accuracy. We use a radial basis function (RBF) interpolation with a thin plate spline to create a smooth displacement field for the whole fluid domain, which does not affect the order of the IMEX time integration scheme. For reasonable accuracies, the IMEX schemes outperform a second-order staggered scheme by a factor of 2-3. As an example for a three-dimensional, real-world problem, a simulation of a transonic wing flutter case, the AGARD 445.6 wing, is performed. For this test case, a clear third-order time accuracy is observed for IMEX3.
In this paper, we present a higher-order accurate in time, partitioned integration scheme (IMEX) for fluid–structure interaction. The scheme is based on a combination of an implicit, L-stable, multi-stage Runge–Kutta scheme and an explicit Runge–Kutta scheme. Fluid and structure dynamics are integrated using the implicit scheme and only the pressure loads acting on the structure are integrated explicitly. For an academic problem we show that mesh optimization functions, which are often necessary in standard mesh deformation algorithms, can have a detrimental effect on the temporal order and accuracy. We use a radial basis function (RBF) interpolation with a thin plate spline to create a smooth displacement field for the whole fluid domain, which does not affect the order of the IMEX time integration scheme. For reasonable accuracies, the IMEX schemes outperform a second-order staggered scheme by a factor of 2–3. As an example for a three-dimensional, real-world problem, a simulation of a transonic wing flutter case, the AGARD 445.6 wing, is performed. For this test case, a clear third-order time accuracy is observed for IMEX3.
Author Bijl, H.
van Zuijlen, A.H.
de Boer, A.
Author_xml – sequence: 1
  givenname: A.H.
  surname: van Zuijlen
  fullname: van Zuijlen, A.H.
  email: a.h.vanzuijlen@tudelft.nl
– sequence: 2
  givenname: A.
  surname: de Boer
  fullname: de Boer, A.
– sequence: 3
  givenname: H.
  surname: Bijl
  fullname: Bijl, H.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18787994$$DView record in Pascal Francis
BookMark eNp9kc1O3DAURq2KSh0oD9BdNmWXYCee2FZXFZQfCambsrY89vXEoySeXjtI7PoOvCFPQpigLliw8pV8zifd-x2TozGOQMg3RitGWXu-q3Z2X9WUioo2Fa35J7JiVNGyFqw9IitKa1YqpdgXcpzSjlIq11yuyHgTth1gGdEBFjkMUIQxwxZNDnEscodx2nZFGmLMXTFA6goHPuKw_M9T0VwWvp-Ce_73lDJONk-4hKCxByiFYeoPfPpKPnvTJzh9e0_I_dWvPxc35d3v69uLn3elbdYyl9aDYJKDUwJqw1TjhXHCbkA4wxi3gvk1qLVpN8BNbX3Luds00kjnrK8BmhNytuTuMf6dIGU9hGSh780IcUq6VpK1vKUz-P0NNMma3qMZbUh6j2Ew-KiZFFIoxWdOLJzFmBKC1zbkw04ZTeg1o_q1B73Tcw_6tQdNGz33MJvsnfk__APnx-LAfKOHAKiTDTBacAHBZu1i-MB-ASQsp5Y
CitedBy_id crossref_primary_10_1002_nme_2526
crossref_primary_10_1002_nme_5710
crossref_primary_10_2514_1_J053304
crossref_primary_10_1007_s00791_010_0150_4
crossref_primary_10_1016_j_jcp_2014_03_034
crossref_primary_10_1002_fld_4049
crossref_primary_10_1016_j_jocs_2021_101327
crossref_primary_10_1016_j_apnum_2011_04_005
crossref_primary_10_2514_1_J059730
crossref_primary_10_1002_fld_2756
crossref_primary_10_1016_j_jcp_2009_06_013
crossref_primary_10_3390_fluids6090314
crossref_primary_10_1016_j_cma_2007_10_010
crossref_primary_10_1108_AEAT_09_2018_0246
crossref_primary_10_1061__ASCE_AS_1943_5525_0000022
crossref_primary_10_1061__ASCE_AS_1943_5525_0001333
crossref_primary_10_1061__ASCE_AS_1943_5525_0001232
crossref_primary_10_1002_nme_5465
crossref_primary_10_1016_j_compstruc_2009_12_006
crossref_primary_10_2514_1_J061929
crossref_primary_10_1016_j_cma_2018_09_015
crossref_primary_10_1016_j_jcp_2019_02_016
crossref_primary_10_1016_j_oceaneng_2023_115319
crossref_primary_10_1016_j_jcp_2010_11_038
crossref_primary_10_1016_j_ast_2015_11_028
crossref_primary_10_1016_j_compfluid_2013_11_009
crossref_primary_10_1016_j_compstruc_2008_11_013
crossref_primary_10_1016_j_cma_2008_05_001
crossref_primary_10_1007_s00162_011_0233_y
crossref_primary_10_1007_s11831_013_9085_5
crossref_primary_10_1016_j_compstruc_2019_05_002
crossref_primary_10_1002_nme_2678
crossref_primary_10_1061__ASCE_AS_1943_5525_0000627
crossref_primary_10_1002_nme_2219
crossref_primary_10_1108_AEAT_12_2014_0211
crossref_primary_10_1016_j_cma_2011_03_015
crossref_primary_10_1016_j_jcp_2020_109441
crossref_primary_10_1016_j_compfluid_2009_09_004
crossref_primary_10_1002_nme_5850
crossref_primary_10_1016_j_jcp_2009_05_013
crossref_primary_10_1016_j_cma_2012_03_010
crossref_primary_10_1016_j_cma_2015_09_025
Cites_doi 10.2514/6.1981-1259
10.1016/j.jcp.2005.08.018
10.1002/fld.850
10.1002/fld.960
10.1061/(ASCE)0893-1321(2000)13:2(52)
10.1016/j.compstruc.2004.06.003
10.1016/S0168-9274(02)00138-1
10.2514/1.3660
10.1080/10618560500510579
10.1016/S0045-7825(00)00391-1
10.1002/(SICI)1097-0363(19970430)24:8<739::AID-FLD516>3.0.CO;2-O
10.2514/6.2001-716
10.2514/2.1975
10.1016/S0045-7825(00)00386-8
10.1002/nme.595
10.1007/s10915-004-4637-3
10.1016/S0045-7825(00)00173-0
10.1016/j.cma.2006.03.017
10.1016/S0045-7825(99)00206-6
10.1615/IntJMultCompEng.v4.i2.60
10.1006/jcph.2002.7059
10.1016/S0045-7825(98)00016-4
10.2514/6.1989-1189
10.1016/S0045-7949(02)00002-0
10.1006/jcph.2001.6932
10.1016/j.jfluidstructs.2004.04.008
10.1016/0045-7825(96)01028-6
10.2514/6.2004-614
10.1016/j.cma.2004.12.005
10.1016/S0045-7825(98)00207-2
10.1016/0045-7825(82)90128-1
10.1016/S1270-9638(00)01087-7
10.1016/S0045-7949(02)00409-1
ContentType Journal Article
Copyright 2007 Elsevier Inc.
2007 INIST-CNRS
Copyright_xml – notice: 2007 Elsevier Inc.
– notice: 2007 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SC
7SP
7U5
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.jcp.2007.03.024
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 1090-2716
EndPage 430
ExternalDocumentID 18787994
10_1016_j_jcp_2007_03_024
S002199910700143X
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6OB
6TJ
7-5
71M
8P~
8WZ
9JN
A6W
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACNCT
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADIYS
ADJOM
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CAG
COF
CS3
D-I
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HME
HMV
HVGLF
HZ~
IHE
J1W
K-O
KOM
LG5
LX9
LZ4
M37
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SHN
SPC
SPCBC
SPD
SPG
SSQ
SSV
SSZ
T5K
T9H
TN5
UPT
UQL
WUQ
XFK
YQT
ZMT
ZU3
ZY4
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
7SC
7SP
7U5
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c358t-cfe7184ed97e2a193f7ad7cbe7da114c71f5e95a6be4a2cf644db38a8ddcf2ee3
ISICitedReferencesCount 60
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000247325600024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0021-9991
IngestDate Sun Sep 28 03:14:39 EDT 2025
Mon Jul 21 09:16:08 EDT 2025
Tue Nov 18 22:33:22 EST 2025
Sat Nov 29 06:45:57 EST 2025
Fri Feb 23 02:35:03 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Higher-order time integration
Fluid–structure interaction
Partitioned coupling
Mesh deformation
Second order
Deformation
Fluid dynamics
Third order
Fluid-structure interaction
Optimization
Spline
Calculation methods
Interpolation
Algorithms
Calculation
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c358t-cfe7184ed97e2a193f7ad7cbe7da114c71f5e95a6be4a2cf644db38a8ddcf2ee3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 29816460
PQPubID 23500
PageCount 17
ParticipantIDs proquest_miscellaneous_29816460
pascalfrancis_primary_18787994
crossref_citationtrail_10_1016_j_jcp_2007_03_024
crossref_primary_10_1016_j_jcp_2007_03_024
elsevier_sciencedirect_doi_10_1016_j_jcp_2007_03_024
PublicationCentury 2000
PublicationDate 2007-05-20
PublicationDateYYYYMMDD 2007-05-20
PublicationDate_xml – month: 05
  year: 2007
  text: 2007-05-20
  day: 20
PublicationDecade 2000
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Journal of computational physics
PublicationYear 2007
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Gordnier, Visbal (bib23) 2004; 19
release 2006a, 2006.
Beckert, Wendland (bib5) 2001; 5
Farhat, Degand, Koobus, Lesoinne (bib12) 1998; 163
Felippa, Park, Farhat (bib2) 2001; 190
Smith, Cesnik, Hodges (bib34) 2000; 13
J.T. Batina, Unsteady euler algorithm with unstructured dynamic mesh for complex-aircraft aeroelastic analysis, Technical Report AIAA-89-1189, 1989.
Bijl, Zuijlen, Mameren (bib29) 2005; 48
E. Yates Jr., AGARD standard aeroelastic configurations for dynamic response. Candidate configuration I.-Wing 445.6, Technical Memorandum 100492, NASA, 1987.
Farhat, Geuzaine, Grandmont (bib18) 2001; 174
Koobus, Farhat (bib43) 1999; 170
Zuijlen, Bijl (bib27) 2006; 4
Zuijlen, Bijl (bib26) 2005; 83
Degand, Farhat (bib13) 2002; 80
Donea (bib17) 1982; 33
Openfem – A Finite Element Toolbox for Matlab and Scilab. Available on
Lesoinne, Farhat (bib37) 1996; 134
Hughes (bib32) 1987
Vierendeels, Dumont, Dick, Verdonck (bib8) 2005; 43
Farhat (bib22) 2005; 19
Carpenter, Kennedy, Bijl, Viken, Vatsa (bib24) 2005; 25
Mavriplis, Yang (bib19) 2006; 213
Matthies, Steindorf (bib10) 2003; 81
Bijl, Carpenter, Vatsa, Kennedy (bib25) 2002; 179
Michler, Brummelen, Borst (bib9) 2005; 47
Helenbrook (bib15) 2003; 56
Boer, Zuijlen, Bijl (bib4) 2007; 196
D. Lynch, K. ONeill, Elastic grid deformation for moving boundary problems in two space dimensions, in: S. Wang (Ed.), Finite Elements in Water Resources, 1980.
A.d. Boer, M.v.d. Schoot, H. Bijl, Mesh deformation based on radial basis function interpolation, Computers and Structures, in press.
A. Jameson, W. Schmidt, E. Turkel, Numerical solutions of the Euler equations by finite volume methods using Runge–Kutta time-stepping schemes, AIAA-81-1259, 1981.
M. Potsdam, G. Guruswamy, A Parallel Multiblock Mesh Movement Scheme for Complex Aeroelastic Applications, Technical Report AIAA-2001-0716, 2001.
Farhat, Lesoinne (bib20) 2000; 182
Giles (bib21) 1997; 24
A. de Boer, A.H. van Zuijlen, H. Bijl, Comparison of the conservative and a consistent approach for the coupling of non-matching meshes, in: Proceedings of the European Conference on Computational Fluid Dynamics, ECCOMAS CFD 2006, 2006.
R. Beaubien, F. Nitzsche, D. Feszty, Time and frequency domain solutions for the AGARD 445 wing, in: Proceedings of the International Forum on Aeroelasticity and Structural Dynamics (IFASD), Munich, Germany, 2005.
Piperno, Farhat (bib3) 2001; 190
Smith, Cesnik, Hodges (bib6) 2000; 13
K. Kovalev, M. Delanaye, C. Hirch, Untangling and optimization of unstructured hexahedral meshes, in: S. Ivanenko, V. Garanzha (Eds.), Grid Generation: Theory and Applications, Moscow, Russia, 2002.
Kennedy, Carpenter (bib36) 2003; 44
A.v. Zuijlen, Fluid–structure Interaction Simulations: Efficient Higher Order Time Integration of Partitioned Systems, Ph.D. thesis, Delft University of Technology, 2006.
Geuzaine, Brown, Harris, Farhat (bib1) 2003; 41
D. Martineau, J. Georgala, A Mesh Movement Algorithm for High Quality Generalized Meshes, in: Proceedings of the 42nd AIAA Fluid Dynamics Conference and Exhibit, 2004.
Causin, Gerbeau, Nobile (bib7) 2005; 194
Guillard, Farhat (bib38) 2000; 190
Farhat (10.1016/j.jcp.2007.03.024_bib18) 2001; 174
Matthies (10.1016/j.jcp.2007.03.024_bib10) 2003; 81
Michler (10.1016/j.jcp.2007.03.024_bib9) 2005; 47
Smith (10.1016/j.jcp.2007.03.024_bib6) 2000; 13
Helenbrook (10.1016/j.jcp.2007.03.024_bib15) 2003; 56
Vierendeels (10.1016/j.jcp.2007.03.024_bib8) 2005; 43
Zuijlen (10.1016/j.jcp.2007.03.024_bib26) 2005; 83
Farhat (10.1016/j.jcp.2007.03.024_bib20) 2000; 182
10.1016/j.jcp.2007.03.024_bib41
Guillard (10.1016/j.jcp.2007.03.024_bib38) 2000; 190
10.1016/j.jcp.2007.03.024_bib42
10.1016/j.jcp.2007.03.024_bib40
Beckert (10.1016/j.jcp.2007.03.024_bib5) 2001; 5
Donea (10.1016/j.jcp.2007.03.024_bib17) 1982; 33
Gordnier (10.1016/j.jcp.2007.03.024_bib23) 2004; 19
10.1016/j.jcp.2007.03.024_bib28
Boer (10.1016/j.jcp.2007.03.024_bib4) 2007; 196
Degand (10.1016/j.jcp.2007.03.024_bib13) 2002; 80
Mavriplis (10.1016/j.jcp.2007.03.024_bib19) 2006; 213
Geuzaine (10.1016/j.jcp.2007.03.024_bib1) 2003; 41
Koobus (10.1016/j.jcp.2007.03.024_bib43) 1999; 170
Kennedy (10.1016/j.jcp.2007.03.024_bib36) 2003; 44
Carpenter (10.1016/j.jcp.2007.03.024_bib24) 2005; 25
Felippa (10.1016/j.jcp.2007.03.024_bib2) 2001; 190
Farhat (10.1016/j.jcp.2007.03.024_bib12) 1998; 163
Hughes (10.1016/j.jcp.2007.03.024_bib32) 1987
Giles (10.1016/j.jcp.2007.03.024_bib21) 1997; 24
10.1016/j.jcp.2007.03.024_bib30
Smith (10.1016/j.jcp.2007.03.024_bib34) 2000; 13
10.1016/j.jcp.2007.03.024_bib31
Causin (10.1016/j.jcp.2007.03.024_bib7) 2005; 194
10.1016/j.jcp.2007.03.024_bib35
10.1016/j.jcp.2007.03.024_bib11
10.1016/j.jcp.2007.03.024_bib33
10.1016/j.jcp.2007.03.024_bib16
Farhat (10.1016/j.jcp.2007.03.024_bib22) 2005; 19
Bijl (10.1016/j.jcp.2007.03.024_bib25) 2002; 179
Zuijlen (10.1016/j.jcp.2007.03.024_bib27) 2006; 4
Bijl (10.1016/j.jcp.2007.03.024_bib29) 2005; 48
10.1016/j.jcp.2007.03.024_bib39
10.1016/j.jcp.2007.03.024_bib14
Lesoinne (10.1016/j.jcp.2007.03.024_bib37) 1996; 134
Piperno (10.1016/j.jcp.2007.03.024_bib3) 2001; 190
References_xml – reference: E. Yates Jr., AGARD standard aeroelastic configurations for dynamic response. Candidate configuration I.-Wing 445.6, Technical Memorandum 100492, NASA, 1987.
– volume: 81
  start-page: 805
  year: 2003
  end-page: 812
  ident: bib10
  article-title: Partitioned strong coupling algorithms for fluid–structure interaction
  publication-title: Computers & Structures
– volume: 4
  start-page: 255
  year: 2006
  end-page: 263
  ident: bib27
  article-title: Implicit and explicit higher-order time integration schemes for fluid–structure interaction computations
  publication-title: International Journal for Multiscale Computational Engineering
– volume: 33
  start-page: 689
  year: 1982
  end-page: 723
  ident: bib17
  article-title: An arbitrary Lagrangian–Eulerian finite element method for transient fluid–structure interactions
  publication-title: Computer Methods in Applied Mechanics and Engineering
– reference: A. Jameson, W. Schmidt, E. Turkel, Numerical solutions of the Euler equations by finite volume methods using Runge–Kutta time-stepping schemes, AIAA-81-1259, 1981.
– reference: A.v. Zuijlen, Fluid–structure Interaction Simulations: Efficient Higher Order Time Integration of Partitioned Systems, Ph.D. thesis, Delft University of Technology, 2006.
– volume: 134
  start-page: 71
  year: 1996
  end-page: 90
  ident: bib37
  article-title: Geometric conservation laws for flow problems with moving boundaries and deformable meshes, and their impact on aeroelastic computations
  publication-title: Computer Methods in Applied Mechanics and Engineering
– reference: A.d. Boer, M.v.d. Schoot, H. Bijl, Mesh deformation based on radial basis function interpolation, Computers and Structures, in press.
– reference: D. Lynch, K. ONeill, Elastic grid deformation for moving boundary problems in two space dimensions, in: S. Wang (Ed.), Finite Elements in Water Resources, 1980.
– reference: M. Potsdam, G. Guruswamy, A Parallel Multiblock Mesh Movement Scheme for Complex Aeroelastic Applications, Technical Report AIAA-2001-0716, 2001.
– volume: 174
  start-page: 669
  year: 2001
  end-page: 694
  ident: bib18
  article-title: The discrete geometric conservation law and the nonlinear stability of ALE schemes for the solution of flow problems on moving grids
  publication-title: Journal of Computational Physics
– reference: A. de Boer, A.H. van Zuijlen, H. Bijl, Comparison of the conservative and a consistent approach for the coupling of non-matching meshes, in: Proceedings of the European Conference on Computational Fluid Dynamics, ECCOMAS CFD 2006, 2006.
– volume: 163
  start-page: 231
  year: 1998
  end-page: 245
  ident: bib12
  article-title: Torsional springs for two-dimensional dynamic unstructured fluid meshes
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 190
  start-page: 1467
  year: 2000
  end-page: 1482
  ident: bib38
  article-title: On the significance of the geometric conservation law for flow computations on moving meshes
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 19
  start-page: 785
  year: 2004
  end-page: 800
  ident: bib23
  article-title: Computation of the aeroelastic response of a flexible delta wing at high angles of attack
  publication-title: Journal of Fluids and Structures
– volume: 196
  start-page: 1515
  year: 2007
  end-page: 1525
  ident: bib4
  article-title: Review of coupling methods for non-matching meshes
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 24
  start-page: 739
  year: 1997
  end-page: 757
  ident: bib21
  article-title: Stability and accuracy of numerical boundary conditions in aeroelastic analysis
  publication-title: International Journal for Numerical Methods in Fluids
– reference: R. Beaubien, F. Nitzsche, D. Feszty, Time and frequency domain solutions for the AGARD 445 wing, in: Proceedings of the International Forum on Aeroelasticity and Structural Dynamics (IFASD), Munich, Germany, 2005.
– volume: 83
  start-page: 93
  year: 2005
  end-page: 105
  ident: bib26
  article-title: Implicit and explicit high order time integration schemes for structural dynamics and fluid–structure interaction computations
  publication-title: Computers & Structures
– volume: 170
  start-page: 103
  year: 1999
  end-page: 129
  ident: bib43
  article-title: Second-order time-accurate and geometrically conservative implicit schemes for flow computations on unstructured dynamic meshes
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 41
  start-page: 363
  year: 2003
  end-page: 371
  ident: bib1
  article-title: Aeroelastic dynamic analysis of a full F-16 configuration for various flight conditions
  publication-title: AIAA Journal
– volume: 194
  start-page: 4506
  year: 2005
  end-page: 4527
  ident: bib7
  article-title: Added-mass effect in the design of partitioned algorithms for fluid–structure problems
  publication-title: Computer Methods in Applied Mechanics and Engineering
– reference: K. Kovalev, M. Delanaye, C. Hirch, Untangling and optimization of unstructured hexahedral meshes, in: S. Ivanenko, V. Garanzha (Eds.), Grid Generation: Theory and Applications, Moscow, Russia, 2002.
– reference: J.T. Batina, Unsteady euler algorithm with unstructured dynamic mesh for complex-aircraft aeroelastic analysis, Technical Report AIAA-89-1189, 1989.
– volume: 48
  start-page: 929
  year: 2005
  end-page: 945
  ident: bib29
  article-title: Validation of adaptive unstructured hexahedral mesh computations of flow around a wind turbine airfoil
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 190
  start-page: 3147
  year: 2001
  end-page: 3170
  ident: bib3
  article-title: Partitioned procedures for the transient solution of coupled aeroelastic problems – Part II: energy transfer analysis and three-dimensional applications
  publication-title: Computer Methods in Applied Mechanics and Engineering
– reference: , release 2006a, 2006.
– volume: 19
  start-page: 595
  year: 2005
  end-page: 603
  ident: bib22
  article-title: CFD on moving grids: from theory to realistic flutter, maneuvering, and multidisciplinary optimization
  publication-title: International Journal of Computational Fluid Dynamics
– year: 1987
  ident: bib32
  article-title: The Finite Element Method, Linear Static and Dynamic Finite Element Analysis
– volume: 190
  start-page: 3247
  year: 2001
  end-page: 3270
  ident: bib2
  article-title: Partitioned analysis of coupled mechanical systems
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 13
  start-page: 52
  year: 2000
  end-page: 58
  ident: bib6
  article-title: Evaluation of some data transfer algorithms for noncontiguous meshes
  publication-title: Journal of Aerospace Engineering
– volume: 25
  start-page: 157
  year: 2005
  end-page: 194
  ident: bib24
  article-title: Fourth-order Runge–Kutta schemes for fluid mechanics applications
  publication-title: Journal of Scientific Computing
– volume: 44
  start-page: 139
  year: 2003
  end-page: 181
  ident: bib36
  article-title: Additive Runge–Kutta schemes for convection–diffusion-reaction equations
  publication-title: Applied Numerical Mathematics
– volume: 213
  start-page: 557
  year: 2006
  end-page: 573
  ident: bib19
  article-title: Construction of the discrete geometric conservation law for high-order time-accurate simulations on dynamic meshes
  publication-title: Journal of Computational Physics
– volume: 56
  start-page: 1007
  year: 2003
  end-page: 1021
  ident: bib15
  article-title: Mesh deformation using the biharmonic operator
  publication-title: International Journal for Numerical Methods in Engineering
– reference: D. Martineau, J. Georgala, A Mesh Movement Algorithm for High Quality Generalized Meshes, in: Proceedings of the 42nd AIAA Fluid Dynamics Conference and Exhibit, 2004.
– volume: 13
  start-page: 52
  year: 2000
  end-page: 58
  ident: bib34
  article-title: Evaluation of some data transfer algorithms for noncontiguous meshes
  publication-title: Journal of Aerospace Engineering
– volume: 43
  start-page: 2549
  year: 2005
  end-page: 2557
  ident: bib8
  article-title: Analysis and stabilization of fluid–structure interaction algorithm for rigid body motion
  publication-title: AIAA Journal
– volume: 5
  start-page: 125
  year: 2001
  end-page: 134
  ident: bib5
  article-title: Multivariate interpolation for fluid–structure-interaction problems using radial basis functions
  publication-title: Aerospace Science and Technology
– volume: 47
  start-page: 1189
  year: 2005
  end-page: 1195
  ident: bib9
  article-title: An interface Newton–Krylov solver for fluid–structure interaction
  publication-title: International Journal for Numerical Methods in Fluids
– reference: Openfem – A Finite Element Toolbox for Matlab and Scilab. Available on:
– volume: 182
  start-page: 499
  year: 2000
  end-page: 515
  ident: bib20
  article-title: Two efficient staggered algorithms for the serial and parallel solution of three-dimensional nonlinear transient aeroelastic problems
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 80
  start-page: 305
  year: 2002
  end-page: 316
  ident: bib13
  article-title: A three-dimensional torsional spring analogy method for unstructured dynamic meshes
  publication-title: Computers and Structures
– volume: 179
  start-page: 1
  year: 2002
  end-page: 17
  ident: bib25
  article-title: Implicit time integration schemes for the unsteady compressible Navier–Stokes equations: laminar flow
  publication-title: Journal of Computational Physics
– ident: 10.1016/j.jcp.2007.03.024_bib28
– ident: 10.1016/j.jcp.2007.03.024_bib30
  doi: 10.2514/6.1981-1259
– volume: 213
  start-page: 557
  year: 2006
  ident: 10.1016/j.jcp.2007.03.024_bib19
  article-title: Construction of the discrete geometric conservation law for high-order time-accurate simulations on dynamic meshes
  publication-title: Journal of Computational Physics
  doi: 10.1016/j.jcp.2005.08.018
– volume: 47
  start-page: 1189
  issue: 10-11
  year: 2005
  ident: 10.1016/j.jcp.2007.03.024_bib9
  article-title: An interface Newton–Krylov solver for fluid–structure interaction
  publication-title: International Journal for Numerical Methods in Fluids
  doi: 10.1002/fld.850
– volume: 48
  start-page: 929
  year: 2005
  ident: 10.1016/j.jcp.2007.03.024_bib29
  article-title: Validation of adaptive unstructured hexahedral mesh computations of flow around a wind turbine airfoil
  publication-title: International Journal for Numerical Methods in Fluids
  doi: 10.1002/fld.960
– volume: 13
  start-page: 52
  issue: 2
  year: 2000
  ident: 10.1016/j.jcp.2007.03.024_bib6
  article-title: Evaluation of some data transfer algorithms for noncontiguous meshes
  publication-title: Journal of Aerospace Engineering
  doi: 10.1061/(ASCE)0893-1321(2000)13:2(52)
– volume: 83
  start-page: 93
  issue: 2-3
  year: 2005
  ident: 10.1016/j.jcp.2007.03.024_bib26
  article-title: Implicit and explicit high order time integration schemes for structural dynamics and fluid–structure interaction computations
  publication-title: Computers & Structures
  doi: 10.1016/j.compstruc.2004.06.003
– volume: 44
  start-page: 139
  year: 2003
  ident: 10.1016/j.jcp.2007.03.024_bib36
  article-title: Additive Runge–Kutta schemes for convection–diffusion-reaction equations
  publication-title: Applied Numerical Mathematics
  doi: 10.1016/S0168-9274(02)00138-1
– volume: 43
  start-page: 2549
  issue: 12
  year: 2005
  ident: 10.1016/j.jcp.2007.03.024_bib8
  article-title: Analysis and stabilization of fluid–structure interaction algorithm for rigid body motion
  publication-title: AIAA Journal
  doi: 10.2514/1.3660
– ident: 10.1016/j.jcp.2007.03.024_bib39
– volume: 19
  start-page: 595
  issue: 8
  year: 2005
  ident: 10.1016/j.jcp.2007.03.024_bib22
  article-title: CFD on moving grids: from theory to realistic flutter, maneuvering, and multidisciplinary optimization
  publication-title: International Journal of Computational Fluid Dynamics
  doi: 10.1080/10618560500510579
– volume: 190
  start-page: 3247
  year: 2001
  ident: 10.1016/j.jcp.2007.03.024_bib2
  article-title: Partitioned analysis of coupled mechanical systems
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/S0045-7825(00)00391-1
– ident: 10.1016/j.jcp.2007.03.024_bib14
– ident: 10.1016/j.jcp.2007.03.024_bib42
– ident: 10.1016/j.jcp.2007.03.024_bib16
– volume: 24
  start-page: 739
  year: 1997
  ident: 10.1016/j.jcp.2007.03.024_bib21
  article-title: Stability and accuracy of numerical boundary conditions in aeroelastic analysis
  publication-title: International Journal for Numerical Methods in Fluids
  doi: 10.1002/(SICI)1097-0363(19970430)24:8<739::AID-FLD516>3.0.CO;2-O
– ident: 10.1016/j.jcp.2007.03.024_bib35
  doi: 10.2514/6.2001-716
– volume: 41
  start-page: 363
  issue: 3
  year: 2003
  ident: 10.1016/j.jcp.2007.03.024_bib1
  article-title: Aeroelastic dynamic analysis of a full F-16 configuration for various flight conditions
  publication-title: AIAA Journal
  doi: 10.2514/2.1975
– volume: 190
  start-page: 3147
  year: 2001
  ident: 10.1016/j.jcp.2007.03.024_bib3
  article-title: Partitioned procedures for the transient solution of coupled aeroelastic problems – Part II: energy transfer analysis and three-dimensional applications
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/S0045-7825(00)00386-8
– volume: 56
  start-page: 1007
  year: 2003
  ident: 10.1016/j.jcp.2007.03.024_bib15
  article-title: Mesh deformation using the biharmonic operator
  publication-title: International Journal for Numerical Methods in Engineering
  doi: 10.1002/nme.595
– volume: 25
  start-page: 157
  issue: 1
  year: 2005
  ident: 10.1016/j.jcp.2007.03.024_bib24
  article-title: Fourth-order Runge–Kutta schemes for fluid mechanics applications
  publication-title: Journal of Scientific Computing
  doi: 10.1007/s10915-004-4637-3
– ident: 10.1016/j.jcp.2007.03.024_bib31
– volume: 190
  start-page: 1467
  year: 2000
  ident: 10.1016/j.jcp.2007.03.024_bib38
  article-title: On the significance of the geometric conservation law for flow computations on moving meshes
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/S0045-7825(00)00173-0
– ident: 10.1016/j.jcp.2007.03.024_bib33
– volume: 196
  start-page: 1515
  year: 2007
  ident: 10.1016/j.jcp.2007.03.024_bib4
  article-title: Review of coupling methods for non-matching meshes
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/j.cma.2006.03.017
– volume: 182
  start-page: 499
  year: 2000
  ident: 10.1016/j.jcp.2007.03.024_bib20
  article-title: Two efficient staggered algorithms for the serial and parallel solution of three-dimensional nonlinear transient aeroelastic problems
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/S0045-7825(99)00206-6
– volume: 4
  start-page: 255
  issue: 2
  year: 2006
  ident: 10.1016/j.jcp.2007.03.024_bib27
  article-title: Implicit and explicit higher-order time integration schemes for fluid–structure interaction computations
  publication-title: International Journal for Multiscale Computational Engineering
  doi: 10.1615/IntJMultCompEng.v4.i2.60
– volume: 179
  start-page: 1
  year: 2002
  ident: 10.1016/j.jcp.2007.03.024_bib25
  article-title: Implicit time integration schemes for the unsteady compressible Navier–Stokes equations: laminar flow
  publication-title: Journal of Computational Physics
  doi: 10.1006/jcph.2002.7059
– volume: 13
  start-page: 52
  issue: 2
  year: 2000
  ident: 10.1016/j.jcp.2007.03.024_bib34
  article-title: Evaluation of some data transfer algorithms for noncontiguous meshes
  publication-title: Journal of Aerospace Engineering
  doi: 10.1061/(ASCE)0893-1321(2000)13:2(52)
– volume: 163
  start-page: 231
  year: 1998
  ident: 10.1016/j.jcp.2007.03.024_bib12
  article-title: Torsional springs for two-dimensional dynamic unstructured fluid meshes
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/S0045-7825(98)00016-4
– ident: 10.1016/j.jcp.2007.03.024_bib11
  doi: 10.2514/6.1989-1189
– volume: 80
  start-page: 305
  year: 2002
  ident: 10.1016/j.jcp.2007.03.024_bib13
  article-title: A three-dimensional torsional spring analogy method for unstructured dynamic meshes
  publication-title: Computers and Structures
  doi: 10.1016/S0045-7949(02)00002-0
– volume: 174
  start-page: 669
  year: 2001
  ident: 10.1016/j.jcp.2007.03.024_bib18
  article-title: The discrete geometric conservation law and the nonlinear stability of ALE schemes for the solution of flow problems on moving grids
  publication-title: Journal of Computational Physics
  doi: 10.1006/jcph.2001.6932
– volume: 19
  start-page: 785
  issue: 6
  year: 2004
  ident: 10.1016/j.jcp.2007.03.024_bib23
  article-title: Computation of the aeroelastic response of a flexible delta wing at high angles of attack
  publication-title: Journal of Fluids and Structures
  doi: 10.1016/j.jfluidstructs.2004.04.008
– volume: 134
  start-page: 71
  year: 1996
  ident: 10.1016/j.jcp.2007.03.024_bib37
  article-title: Geometric conservation laws for flow problems with moving boundaries and deformable meshes, and their impact on aeroelastic computations
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/0045-7825(96)01028-6
– ident: 10.1016/j.jcp.2007.03.024_bib40
  doi: 10.2514/6.2004-614
– volume: 194
  start-page: 4506
  year: 2005
  ident: 10.1016/j.jcp.2007.03.024_bib7
  article-title: Added-mass effect in the design of partitioned algorithms for fluid–structure problems
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/j.cma.2004.12.005
– year: 1987
  ident: 10.1016/j.jcp.2007.03.024_bib32
– ident: 10.1016/j.jcp.2007.03.024_bib41
– volume: 170
  start-page: 103
  year: 1999
  ident: 10.1016/j.jcp.2007.03.024_bib43
  article-title: Second-order time-accurate and geometrically conservative implicit schemes for flow computations on unstructured dynamic meshes
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/S0045-7825(98)00207-2
– volume: 33
  start-page: 689
  year: 1982
  ident: 10.1016/j.jcp.2007.03.024_bib17
  article-title: An arbitrary Lagrangian–Eulerian finite element method for transient fluid–structure interactions
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/0045-7825(82)90128-1
– volume: 5
  start-page: 125
  issue: 2
  year: 2001
  ident: 10.1016/j.jcp.2007.03.024_bib5
  article-title: Multivariate interpolation for fluid–structure-interaction problems using radial basis functions
  publication-title: Aerospace Science and Technology
  doi: 10.1016/S1270-9638(00)01087-7
– volume: 81
  start-page: 805
  year: 2003
  ident: 10.1016/j.jcp.2007.03.024_bib10
  article-title: Partitioned strong coupling algorithms for fluid–structure interaction
  publication-title: Computers & Structures
  doi: 10.1016/S0045-7949(02)00409-1
SSID ssj0008548
Score 2.2132173
Snippet In this paper, we present a higher-order accurate in time, partitioned integration scheme (IMEX) for fluid–structure interaction. The scheme is based on a...
In this paper, we present a higher-order accurate in time, partitioned integration scheme (IMEX) for fluid-structure interaction. The scheme is based on a...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 414
SubjectTerms Computational techniques
Exact sciences and technology
Fluid–structure interaction
Higher-order time integration
Mathematical methods in physics
Mesh deformation
Partitioned coupling
Physics
Title Higher-order time integration through smooth mesh deformation for 3D fluid–structure interaction simulations
URI https://dx.doi.org/10.1016/j.jcp.2007.03.024
https://www.proquest.com/docview/29816460
Volume 224
WOSCitedRecordID wos000247325600024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1090-2716
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008548
  issn: 0021-9991
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbKxgMSGnexAcMPiAeqVGkudfxYWCdAU-GhkypeLNc-0VKlaVnWab-BX81x7KTppg144CWyIufSfp-PT3x8zkfIOy77zE8ljrQ4Cr1IQ4gtPMwCyUOIuNYzvxKbYONxMp3y753OrzoX5jJnRZFcXfHVf4UazyHYJnX2H-BuboonsI2g4xFhx-NfAW93bnhVTc1KOr4pCZFVgQGry1MulohRdwHlWVdDk8JY7ToMj7ppvs60Z4vLmhCDucW5kxUvs4XT_CpvcW1VJRVRLzPaxZPGdzcJUz_W2Ty3Bm-4SY_Q0P24dOram8X7eb7JoaiXJ5iJrAd-2-SaPSDcSnL1wFpZn_tewGySZW2GA5tLvcU3a1Qjm2bq5ufIxnFumH67CjHvzdXKVaYMe76751aZ7fE3cXx6ciImo-nk_eqnZxTITKTeybHcI7sBizlayN3hl9H0azOvI5vtvO5-UB0jr3YLXnvqbV7Ow5UsceylVjTlxvxfOTWTx2TPQUaHlkVPSAeKp-SR-zKhzu6Xz0jeJhU1pKItUlFHKmpJRQ2paItUFFs0PKLXSEVbpKItUj0np8ejyafPntPp8FQYJxeeSgE9nAg0ZxBI_CJImdRMzYBpiZ_bivXTGHgsBzOIZKBSdMH1LExkorVKA4DwBdkplgW8JJQNFL7egMcpRBHvJ3wARm8A-zKQAyX3iV__r0K5IvZGSyUX9W7FuUAojLgqE34oEIp98qG5ZGUruNzVOarBEs4Fta6lQJrdddnhFrCbByU4IXKOHd7WSAu03yYoJwtYrksR8MSU-PMP_tjjFXmwGWCvyQ6iBW_IfXV5kZXnh46tvwHHd8JU
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Higher-order+time+integration+through+smooth+mesh+deformation+for+3D+fluid-structure+interaction+simulations&rft.jtitle=Journal+of+computational+physics&rft.au=van+Zuijlen%2C+A+H&rft.au=de+Boer%2C+A&rft.au=Bijl%2C+H&rft.date=2007-05-20&rft.issn=0021-9991&rft.eissn=1090-2716&rft.volume=224&rft.issue=1&rft.spage=414&rft.epage=430&rft_id=info:doi/10.1016%2Fj.jcp.2007.03.024&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9991&client=summon