Hierarchical generation of α-Pareto optimal solutions in large-scale multi-objective non-linear systems with fuzzy parameters

This paper proposes a decomposition method for hierarchical generation of α-Pareto optimal solutions in large-scale multi-objective non-linear programming (MONLP) problems with fuzzy parameters in the objective functions and in the constraints (FMONLP). These fuzzy parameters are characterized by fu...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied mathematical modelling Ročník 32; číslo 6; s. 930 - 957
Hlavní autori: Abo-Sinna, Mahmoud A., Amer, Azza H., Ibrahim, Ashraf S.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York, NY Elsevier Inc 01.06.2008
Elsevier Science
Predmet:
ISSN:0307-904X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper proposes a decomposition method for hierarchical generation of α-Pareto optimal solutions in large-scale multi-objective non-linear programming (MONLP) problems with fuzzy parameters in the objective functions and in the constraints (FMONLP). These fuzzy parameters are characterized by fuzzy numbers. For such problems, the concept of α-Pareto optimality introduced by extending the ordinary Pareto optimality based on the α-level sets of fuzzy numbers. The decomposition method is based on the principle of decompose the original problem into interdependent sub-problems. In this method, the global multi-objective non-linear problem is decomposed into smaller multi-objective sub-problems. The smaller sub-problems, which obtained solved separately by using the weighting method and through an operative procedure. All these solution are coordinates in such a way that an optimal solution for the global problem achieved. In addition, an interactive fuzzy decision-making algorithm for hierarchical generation of α-Pareto optimal solution through the decomposition method is developed. Finally, two numerical examples given to illustrate the results developed in this paper.
Bibliografia:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0307-904X
DOI:10.1016/j.apm.2007.02.035