Effect of Reinforcement with Micro- and Ultradispersed Diamond Powders on the Properties of Diamond Tubular Drills During the Processing of Some Non-Metallic Materials

The study presents the results of comparative laboratory tests of diamond tubular drills when drilling window glass, granite, and abrasive stones based on silicon carbide SiC. The tests were carried out in cold running water. Tin bronze containing micro- and ultradispersed diamond powders of ASM 40/...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Powder metallurgy and metal ceramics Jg. 59; H. 11-12; S. 722 - 729
Hauptverfasser: Umansky, V.P., Krasovsky, V.P., Bashchenko, O.A.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.03.2021
Springer
Springer Nature B.V
Schlagworte:
ISSN:1068-1302, 1573-9066
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The study presents the results of comparative laboratory tests of diamond tubular drills when drilling window glass, granite, and abrasive stones based on silicon carbide SiC. The tests were carried out in cold running water. Tin bronze containing micro- and ultradispersed diamond powders of ASM 40/28, ASM 10/7 (MDP), ASM 1/0 (UDDP) grades, and molybdenum powder were used as a matrix of the tool. Furthermore, the dependence of the hardness of specially prepared matrix samples on their composition was examined. With an increase in the ASM 1/0 concentration up to 5 wt.% in the reinforcement, the hardness of the matrix samples increased by one-third and reached a maximum of ~96.5 HRB. A further increase in the ASM 1/0 concentration led to a slight decrease in the hardness of the samples. The use of larger diamond powders required a higher concentration, providing high values of hardness. By adding ASM 10/7 in an amount of 10 wt.% and ASM 40/28 in the amount of 40–60 wt.% we managed to increase the hardness of the matrix to the same maximum. The introduction of a reinforcement in a bonding matrix of diamond tubular drills in amount ensuring its maximum hardness has significantly increased the efficiency of their operation. Thus, the wear of drills after glass processing decreased by 2–6 times, and the drilling speed increased by 3–4 times. Drill wear after granite processing has decreased by 50–84 times, and the drilling speed has increased 2.7–6 times, correspondingly. Finally, after processing of an abrasive stone based on silicon carbide SiC, the wear of diamond tubular drills decreased by 1.4– 2.9 times, and the drilling speed increased by 1.5–2.5 times. The effect of additives in the reinforcement of the tool depended on the choice of the diamond powder grade and their concentration. The best option was the introduction of ASM 1/0 (UDDP) powder in an amount of 5– 9 wt.%. The introduction of ASM 10/7, and especially ASM 40/28 (MDP), into the reinforcement required, firstly, their higher concentration (10–40 wt.%), and secondly, was not effective enough since the wear indicators of diamond tools were higher, and the drilling speed was lower.
AbstractList The study presents the results of comparative laboratory tests of diamond tubular drills when drilling window glass, granite, and abrasive stones based on silicon carbide SiC. The tests were carried out in cold running water. Tin bronze containing micro- and ultradispersed diamond powders of ASM 40/28, ASM 10/7 (MDP), ASM 1/0 (UDDP) grades, and molybdenum powder were used as a matrix of the tool. Furthermore, the dependence of the hardness of specially prepared matrix samples on their composition was examined. With an increase in the ASM 1/0 concentration up to 5 wt.% in the reinforcement, the hardness of the matrix samples increased by one-third and reached a maximum of ~96.5 HRB. A further increase in the ASM 1/0 concentration led to a slight decrease in the hardness of the samples. The use of larger diamond powders required a higher concentration, providing high values of hardness. By adding ASM 10/7 in an amount of 10 wt.% and ASM 40/28 in the amount of 40–60 wt.% we managed to increase the hardness of the matrix to the same maximum. The introduction of a reinforcement in a bonding matrix of diamond tubular drills in amount ensuring its maximum hardness has significantly increased the efficiency of their operation. Thus, the wear of drills after glass processing decreased by 2–6 times, and the drilling speed increased by 3–4 times. Drill wear after granite processing has decreased by 50–84 times, and the drilling speed has increased 2.7–6 times, correspondingly. Finally, after processing of an abrasive stone based on silicon carbide SiC, the wear of diamond tubular drills decreased by 1.4– 2.9 times, and the drilling speed increased by 1.5–2.5 times. The effect of additives in the reinforcement of the tool depended on the choice of the diamond powder grade and their concentration. The best option was the introduction of ASM 1/0 (UDDP) powder in an amount of 5– 9 wt.%. The introduction of ASM 10/7, and especially ASM 40/28 (MDP), into the reinforcement required, firstly, their higher concentration (10–40 wt.%), and secondly, was not effective enough since the wear indicators of diamond tools were higher, and the drilling speed was lower.
Audience Academic
Author Krasovsky, V.P.
Umansky, V.P.
Bashchenko, O.A.
Author_xml – sequence: 1
  givenname: V.P.
  surname: Umansky
  fullname: Umansky, V.P.
  email: umanskyvp@gmail.com
  organization: Frantsevich Institute for Problems of Materials Science, National Academy of Sciences of Ukraine
– sequence: 2
  givenname: V.P.
  surname: Krasovsky
  fullname: Krasovsky, V.P.
  organization: Frantsevich Institute for Problems of Materials Science, National Academy of Sciences of Ukraine
– sequence: 3
  givenname: O.A.
  surname: Bashchenko
  fullname: Bashchenko, O.A.
  organization: Frantsevich Institute for Problems of Materials Science, National Academy of Sciences of Ukraine
BookMark eNp9kctq3TAQhk1Jobm9QFeCrpXqYss-y5CTXiCnCU2yFrqMEgVbOpVkQp-or1m5bih0EbQYafi_GfT_R81BiAGa5j0lZ5SQ_mOmlBKBCaOYEEZ6zN80h7TrOd4QIQ7qnYgBU07Yu-Yo5ydCKtbSw-bXpXNgCooOfQcfXEwGJggFPfvyiHbepIiRChbdjyUp6_MeUgaLtl5NsbZv4rOtHRQDKo-AblKsguIhLxNfRHeznkeV0Db5ccxoOycfHl70BnJenlV_GydA32LAOyhqHL1BO1UgeTXmk-atqwVO_9bj5v7T5d3FF3x1_fnrxfkVNrwbCtZmI6y1ZiBmsHTjFOu05n1rGdWaKqV0p52mRDtDlWMWCOkG2-rWOtYPivHj5sM6d5_ijxlykU9xTqGulKxjgtO245uqOltVD2oEudhWzTH1WJi8qdE4X_vnQlAhqtNDBdgKVD9zTuDkPvlJpZ-SErkkKNcEZU1Q_klQ8goN_0HGF1V8DHWbH19H-Yrm_eI1pH_feIX6DSy9tT0
CitedBy_id crossref_primary_10_1007_s11106_025_00499_9
Cites_doi 10.1007/s11106-020-00181-2
10.3103/S1063457613050092
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2021
COPYRIGHT 2021 Springer
Springer Science+Business Media, LLC, part of Springer Nature 2021.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2021
– notice: COPYRIGHT 2021 Springer
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2021.
DBID AAYXX
CITATION
DOI 10.1007/s11106-021-00207-3
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Visual Arts
Engineering
EISSN 1573-9066
EndPage 729
ExternalDocumentID A661660108
10_1007_s11106_021_00207_3
GroupedDBID -4Y
-58
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
123
1N0
2.D
28-
29O
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
642
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IAO
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P9N
PF0
PT4
PT5
Q2X
QOK
QOR
QOS
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W4F
WJK
WK8
XU3
YLTOR
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8T
Z8W
Z8Z
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
KB.
M7S
PDBOC
PHGZM
PHGZT
PQGLB
PTHSS
ID FETCH-LOGICAL-c358t-bc96dddc80c8d19fa25bb374d21bb1aaab5bfb10bfc1af2de0058d4b4df278a23
IEDL.DBID RSV
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000645188400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1068-1302
IngestDate Thu Sep 25 00:48:09 EDT 2025
Sat Nov 29 10:23:32 EST 2025
Sat Nov 29 03:56:47 EST 2025
Tue Nov 18 22:24:02 EST 2025
Fri Feb 21 02:48:24 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11-12
Keywords wear
drilling tests
matrix reinforcement
diamond drills
drilling speed
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-bc96dddc80c8d19fa25bb374d21bb1aaab5bfb10bfc1af2de0058d4b4df278a23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2526314539
PQPubID 326338
PageCount 8
ParticipantIDs proquest_journals_2526314539
gale_infotracacademiconefile_A661660108
crossref_primary_10_1007_s11106_021_00207_3
crossref_citationtrail_10_1007_s11106_021_00207_3
springer_journals_10_1007_s11106_021_00207_3
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Powder metallurgy and metal ceramics
PublicationTitleAbbrev Powder Metall Met Ceram
PublicationYear 2021
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References I.P. Grushevsky, V.A. Baiunchikov, and V.S. Kabanov, “Method of diamond drilling tool production,” USSR Patent 782958, publ. November 30 (1980), Bulletin No. 44.
SteidleHMachining bores in aluminium alloysInd. Diamond Rev.198747523247248
N.V. Novikov, G.P. Bogatyreva, and R.K. Bogdanov, “Influence of nanodispersed diamond additives on physical and mechanical properties of metal matrix of drilling tools,” Superhard Mater., No. 4, 70–77 (2011).
V.P. Umansky, “Improvement of diamond tubular drills performance characteristics by metallization of diamonds with chromium,” Adgez. Raspl. Paika Mater., Issue 40, 98–102 (2007).
Yu.V Naidich, V.P. Umanskii, and I.A. Lavrinenko, Strength of the Diamond–Metal Interface and Brazing of Diamonds, Cambridge International Science Publishing (2007), 160 p.
E.A. Levashov, V.V. Kurbatkin, and V.A. Andreev, “Bonding matrix for the manufacture of diamond tools,” Russian Patent 2286241, publ. October 27 (2006), Bulletin No. 5.
G.G. Kariuk, A.A. Adamovsky, and A.A. Aranovich, “Abrasive mass,” Ukrainian Patent 12217, publ. December 25 (1996), Bulletin No. 4.
L.L. Ostrovsky and V.A. Murovsky, “Metallic bonding for abrasive tools production,” USSR Patent 452489, publ. December 25 (1996), Bulletin No. 4.
Y.V. Naidich, P. Volk, and I.A. Lavrinenko, “Impregnation of metallized diamond powders with metallic melt,” Powder Metallurgy, No. 9, 22–25 (1981).
A.A. Zaitsev, D.A. Sidorenko, and E.A. Levashov, “Diamond tool for cutting highly reinforced concrete with dispersion-strengthened metal bonded nanoparticles,” Superhard Mater., No. 6, 78–89 (2010).
A.I. Grabchenko, I.M. Pyzhov, and V.A. Fedorovich, “Abrasive wheel material,” Ukrainian Useful Model 69459, publ. April 25 (2012).
N.V. Novikov (ed.), Synthetic Superhard Materials, Vol. 2, Composite Tool Superhard Materials [in Russian], Naukova Dumka, Kyiv (1986), p. 264.
V.P. Umansky, N.P. Brodnikovskiy, O.A. Bashchenko, and Ye.A. Rokitskaya, “The effect of matrix and processed material properties on the performance of diamond drills,” Powder Metall. Met. Ceram., 59, No. 7–8, 477–482 (2020).
M.N. Safonova, A.A. Fedotov, and A.S. Syromyatnikova, “Research of influence of additives of micro- and ultradispersed powders of natural diamond on properties and structure of bronze-based composites,” Rock Cutting and Metal-Processing Tools–Technique and Technology of its Production,” 16, p. 460-466 (2013).
N.I. Kornilov, V.S. Travkin, L.K. Beresten, and D.I. Kogan, Rock Destruction Tool for Geological Prospecting Wells, Handbook, Nedra, Moscow (1979), 359 p.
Yu.V. Naidich, V.P. Umansky, N.P. Brodnikovsky, A.S. Kulakov, and Ye.A. Rokitskaya, “The influence of the reinforcement from ultradispersed ASM 1/0 diamond powders and molybdenum in the bonding matrix of tubular drills on their performance in processing of some nonmetallic materials,” Adgez. Raspl. Paika Mater., Issue 50, 94–104 (2017).
Yu.V. Naidich, G.A. Kolesnichenko, I.A. Lavrinenko, and Ya.F. Motsak, Soldering and Metal Plating of Superhard Tool Materials [in Russian], Naukova Dumka, Kyiv (1977), p. 186.
V.N. Bakul, Basics of Design and Manufacturing Technology of Abrasive and Diamond Tools [in Russian], Mashinostroenie, Moscow (1975), p. 297.
EvansDNicholasMScottPThe wetting and bonding of diamonds by copper titanium alloysInd. Diamond Rev.19779306309
A.A. Bugaev, V.N. Livshits, and V.V. Ivanov, Synthetic Diamonds in Geological Prospecting Drilling [in Russian], Naukova Dumka, Kyiv (1978), p. 232.
V.P Pereyaslov, L.P. Primak, and M.N. Voloshin, “Diamond tools with a titanium bonding matrix,” Superh. Mater., 2, 27–29 (1987).
Yu.V. Naidich, A.A. Bugaev, V.A. Evdokimov, A.A. Adamovsky, V.P. Umansky, M.S. Zyukin, T.B. Konovalenko, Yu. A. Bakardzhiev, E.N. Shnitnikov, and A.I. Rafalsky, “Method of manufacturing the diamond–hard-alloy macrocomposite material,” Ukrainian Patent 85947, publ. March 10 (2009), Bulletin No. 5.
Tetsuo Nakai, Akio Hara, and Danki Sumitomo, “Diamond cutting tools,” Japan Patent 60–260589, publ. June 2 (1987).
E.E Ashkinazi, A.A. Shulzhenko, and V.G. Gargin, “Diamond polycrystalline composite material with dispersion-strengthened nickel-based additive,” Superhard Mater., No. 5, 95–98 (2013).
V.P. Umanskii, “The impregnation technique of micro- and ultrafine diamond powders in the manufacture of tools,” Ukrainian Patent 120657, publ. January 10 (2020), Bulletin No. 1.
ChertovichAFPankevichAPBalashovaIVComposition of metallic bonds for processin of hard materials (Patent review)Almazy Sverkhtverd. Mater.198131214
207_CR16
207_CR17
207_CR14
207_CR15
207_CR18
207_CR19
AF Chertovich (207_CR8) 1981; 3
207_CR4
207_CR13
207_CR2
207_CR10
207_CR1
207_CR11
H Steidle (207_CR12) 1987; 47
207_CR25
207_CR26
207_CR20
D Evans (207_CR3) 1977; 9
207_CR23
207_CR24
207_CR21
207_CR22
207_CR7
207_CR6
207_CR5
207_CR9
References_xml – reference: V.P. Umansky, N.P. Brodnikovskiy, O.A. Bashchenko, and Ye.A. Rokitskaya, “The effect of matrix and processed material properties on the performance of diamond drills,” Powder Metall. Met. Ceram., 59, No. 7–8, 477–482 (2020).
– reference: I.P. Grushevsky, V.A. Baiunchikov, and V.S. Kabanov, “Method of diamond drilling tool production,” USSR Patent 782958, publ. November 30 (1980), Bulletin No. 44.
– reference: E.A. Levashov, V.V. Kurbatkin, and V.A. Andreev, “Bonding matrix for the manufacture of diamond tools,” Russian Patent 2286241, publ. October 27 (2006), Bulletin No. 5.
– reference: A.A. Zaitsev, D.A. Sidorenko, and E.A. Levashov, “Diamond tool for cutting highly reinforced concrete with dispersion-strengthened metal bonded nanoparticles,” Superhard Mater., No. 6, 78–89 (2010).
– reference: Yu.V Naidich, V.P. Umanskii, and I.A. Lavrinenko, Strength of the Diamond–Metal Interface and Brazing of Diamonds, Cambridge International Science Publishing (2007), 160 p.
– reference: N.V. Novikov (ed.), Synthetic Superhard Materials, Vol. 2, Composite Tool Superhard Materials [in Russian], Naukova Dumka, Kyiv (1986), p. 264.
– reference: Yu.V. Naidich, A.A. Bugaev, V.A. Evdokimov, A.A. Adamovsky, V.P. Umansky, M.S. Zyukin, T.B. Konovalenko, Yu. A. Bakardzhiev, E.N. Shnitnikov, and A.I. Rafalsky, “Method of manufacturing the diamond–hard-alloy macrocomposite material,” Ukrainian Patent 85947, publ. March 10 (2009), Bulletin No. 5.
– reference: A.A. Bugaev, V.N. Livshits, and V.V. Ivanov, Synthetic Diamonds in Geological Prospecting Drilling [in Russian], Naukova Dumka, Kyiv (1978), p. 232.
– reference: V.P Pereyaslov, L.P. Primak, and M.N. Voloshin, “Diamond tools with a titanium bonding matrix,” Superh. Mater., 2, 27–29 (1987).
– reference: EvansDNicholasMScottPThe wetting and bonding of diamonds by copper titanium alloysInd. Diamond Rev.19779306309
– reference: Yu.V. Naidich, V.P. Umansky, N.P. Brodnikovsky, A.S. Kulakov, and Ye.A. Rokitskaya, “The influence of the reinforcement from ultradispersed ASM 1/0 diamond powders and molybdenum in the bonding matrix of tubular drills on their performance in processing of some nonmetallic materials,” Adgez. Raspl. Paika Mater., Issue 50, 94–104 (2017).
– reference: G.G. Kariuk, A.A. Adamovsky, and A.A. Aranovich, “Abrasive mass,” Ukrainian Patent 12217, publ. December 25 (1996), Bulletin No. 4.
– reference: SteidleHMachining bores in aluminium alloysInd. Diamond Rev.198747523247248
– reference: Yu.V. Naidich, G.A. Kolesnichenko, I.A. Lavrinenko, and Ya.F. Motsak, Soldering and Metal Plating of Superhard Tool Materials [in Russian], Naukova Dumka, Kyiv (1977), p. 186.
– reference: M.N. Safonova, A.A. Fedotov, and A.S. Syromyatnikova, “Research of influence of additives of micro- and ultradispersed powders of natural diamond on properties and structure of bronze-based composites,” Rock Cutting and Metal-Processing Tools–Technique and Technology of its Production,” 16, p. 460-466 (2013).
– reference: A.I. Grabchenko, I.M. Pyzhov, and V.A. Fedorovich, “Abrasive wheel material,” Ukrainian Useful Model 69459, publ. April 25 (2012).
– reference: Y.V. Naidich, P. Volk, and I.A. Lavrinenko, “Impregnation of metallized diamond powders with metallic melt,” Powder Metallurgy, No. 9, 22–25 (1981).
– reference: V.P. Umansky, “Improvement of diamond tubular drills performance characteristics by metallization of diamonds with chromium,” Adgez. Raspl. Paika Mater., Issue 40, 98–102 (2007).
– reference: E.E Ashkinazi, A.A. Shulzhenko, and V.G. Gargin, “Diamond polycrystalline composite material with dispersion-strengthened nickel-based additive,” Superhard Mater., No. 5, 95–98 (2013).
– reference: N.V. Novikov, G.P. Bogatyreva, and R.K. Bogdanov, “Influence of nanodispersed diamond additives on physical and mechanical properties of metal matrix of drilling tools,” Superhard Mater., No. 4, 70–77 (2011).
– reference: Tetsuo Nakai, Akio Hara, and Danki Sumitomo, “Diamond cutting tools,” Japan Patent 60–260589, publ. June 2 (1987).
– reference: L.L. Ostrovsky and V.A. Murovsky, “Metallic bonding for abrasive tools production,” USSR Patent 452489, publ. December 25 (1996), Bulletin No. 4.
– reference: V.N. Bakul, Basics of Design and Manufacturing Technology of Abrasive and Diamond Tools [in Russian], Mashinostroenie, Moscow (1975), p. 297.
– reference: ChertovichAFPankevichAPBalashovaIVComposition of metallic bonds for processin of hard materials (Patent review)Almazy Sverkhtverd. Mater.198131214
– reference: N.I. Kornilov, V.S. Travkin, L.K. Beresten, and D.I. Kogan, Rock Destruction Tool for Geological Prospecting Wells, Handbook, Nedra, Moscow (1979), 359 p.
– reference: V.P. Umanskii, “The impregnation technique of micro- and ultrafine diamond powders in the manufacture of tools,” Ukrainian Patent 120657, publ. January 10 (2020), Bulletin No. 1.
– ident: 207_CR9
– ident: 207_CR26
  doi: 10.1007/s11106-020-00181-2
– ident: 207_CR5
– ident: 207_CR7
– ident: 207_CR19
– ident: 207_CR1
– ident: 207_CR17
– ident: 207_CR15
– ident: 207_CR11
– ident: 207_CR24
– ident: 207_CR20
– ident: 207_CR22
– volume: 9
  start-page: 306
  year: 1977
  ident: 207_CR3
  publication-title: Ind. Diamond Rev.
– ident: 207_CR6
– ident: 207_CR14
– ident: 207_CR4
– volume: 47
  start-page: 247
  issue: 523
  year: 1987
  ident: 207_CR12
  publication-title: Ind. Diamond Rev.
– ident: 207_CR18
– ident: 207_CR2
– ident: 207_CR13
  doi: 10.3103/S1063457613050092
– ident: 207_CR16
– ident: 207_CR10
– ident: 207_CR23
– ident: 207_CR25
– volume: 3
  start-page: 12
  year: 1981
  ident: 207_CR8
  publication-title: Almazy Sverkhtverd. Mater.
– ident: 207_CR21
SSID ssj0010041
Score 2.1977887
Snippet The study presents the results of comparative laboratory tests of diamond tubular drills when drilling window glass, granite, and abrasive stones based on...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 722
SubjectTerms Abrasive wear
Additives
Ceramics
Characterization and Evaluation of Materials
Chemistry and Materials Science
Comparative analysis
Composites
Diamond drills
Diamond tools
Drilling
Drills
Glass
Granite
Hardness
Laboratory tests
Materials Science
Metallic Materials
Molybdenum
Natural Materials
Powder Metallurgy Industry and Managerial Economics
Powders
Reinforcement
Silicon carbide
Stone
Tin bronzes
Tool wear
Title Effect of Reinforcement with Micro- and Ultradispersed Diamond Powders on the Properties of Diamond Tubular Drills During the Processing of Some Non-Metallic Materials
URI https://link.springer.com/article/10.1007/s11106-021-00207-3
https://www.proquest.com/docview/2526314539
Volume 59
WOSCitedRecordID wos000645188400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink
  customDbUrl:
  eissn: 1573-9066
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010041
  issn: 1068-1302
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagcIAD5Sm2FOQDEgeItLHzcI4V24oDu1r1pd4sP6VIaYKSbPuT-JvMOEkXWhUJjlbGjqWZ8Tw885mQjxBwWeG8izQoUpSYmEeFwUQ-50nuweFNbYDM_56vVuLioliPTWHdVO0-XUmGk3rb7AaWCgtmIfwFHwdU4yF5BOZOoDoen5zf3B0ghFS448wgPuJYv7N3_xp_mKPbh_Kd29FgdI52_2-7z8mz0cmkB4NUvCAPXP2SPP0NehBG52W3GWi6V-TnAGJMG0-PXcBSNSFtSDFNS5dYtBdRVVt6VvWtsiXCi3fO0kWJjxVZum6usSCaNjUFh5KuMcPfIlQrrjgRnW401rzSRVtWVUcXoUFyosduBRwC_Ulz6eiqqaOlg8igKg1dqn5QlNfk7Ojw9Ou3aHzCITI8FX2kTZFZa42YG2HjwiuWas3zxLJY61gppVPtdTzX3sTKM-vwmUOb6MR6lgvF-BuyUze1e0toEVCYMg8OK0-YFzCTmWKulZl7neZ-RuKJk9KM-Ob4zEYlt8jMyBIJLJGBJZLPyOebOT8GdI-_Un9CAZHIBljZqLGDAfaHIFryAHydDANcMSP7kwzJ8UzoJEtZxuMk5cWMfJlkZvv5_v_u_Rv5O_KEBbHDQrl9stO3G_eePDZXfdm1H4Ku_AKNKQ4h
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagIAEHnq3YUsAHJA4QaWPneaxYqiJ2V6t2W_Vm-SlFShOUZOlP6t9kxkm6PFQkOFoZO5Zm7Hl_JuQdOFwms84GCg5SEOmQB7nGQD7nUerA4I2Nh8yfp8tldnGRr4amsHasdh9Tkv6m3ja7gabCgllwf8HGgaNxl9yLQGNhId_J6flN7gAhpHyOMwH_iGP9zv7ta_yijn6_lP_Ijnqlc_Tk_7b7lDwejEx62EvFM3LHVs_Jo5-gB2F0XrSbnqZ9Qa57EGNaO3piPZaq9mFDimFausCivYDKytCzsmukKRBevLWGzgp8rMjQVX2FBdG0rigYlHSFEf4GoVpxxZFovVFY80pnTVGWLZ35BsmRHrsVcAj0p_Wlpcu6ChYWPIOy0HQhu_6g7JKzo8_rT8fB8IRDoHmcdYHSeWKM0dlUZybMnWSxUjyNDAuVCqWUKlZOhVPldCgdMxafOTSRioxjaSYZ3yM7VV3Zl4TmHoUpcWCw8oi5DGYynU-V1FOn4tRNSDhyUugB3xyf2SjFFpkZWSKAJcKzRPAJ-XAz51uP7vFX6vcoIALZACtrOXQwwP4QREscgq2ToIObTcjBKENiuBNawWKW8DCKeT4hH0eZ2X6-_b_7_0b-ljw4Xi_mYv5l-fUVeci8CGLR3AHZ6ZqNfU3u6-9d0TZv_Ln5ATvFEQU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BQQgOPFuxpYAPSBwg6sbO81ixXYHorlb0od4sP6VIaVIlWfhJ_E08TtJtQUVCHK2MHUszY894Zr4BeOccLp0ZawLpFCmIVMiCXOFDPmNRap3BG2sPmX-ULpfZ-Xm-ulbF77Pdx5BkX9OAKE1Vt3-p7f6m8M3dWpg861xhZ-84NbkL9yJsGoT--vHZVRwB4aR8vDNxvhLDXJ7d29e4cTX9fkD_ESn1F9D8yf9v_Sk8HoxPctBLyzO4Y6rn8OgaJKEbnRXtuqdpX8DPHtyY1JZ8Mx5jVfnnRILPt2SByXwBEZUmp2XXCF0g7HhrNJkV2MRIk1X9AxOlSV0RZ2iSFb78NwjhiiuORCdribmwZNYUZdmSmS-cHOmxigGHjv64vjBkWVfBwjiPoSwUWYiuV6BtOJ0fnnz6HAytHQLF4qwLpMoTrbXKpirTYW4FjaVkaaRpKGUohJCxtDKcSqtCYak22P5QRzLSlqaZoGwHtqq6Mi-B5B6dKbHOkGURtZmbSVU-lUJNrYxTO4Fw5CpXA-45tt8o-QaxGVnCHUu4ZwlnE_hwNeeyR_34K_V7FBaObHArKzFUNrj9IbgWP3A2UIKObzaBvVGe-HBWtJzGNGFhFLN8Ah9H-dl8vv2_u_9G_hYerGZzfvRl-fUVPKReAjGXbg-2umZtXsN99b0r2uaNV6FflZUZ6Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Reinforcement+with+Micro-+and+Ultradispersed+Diamond+Powders+on+the+Properties+of+Diamond+Tubular+Drills+During+the+Processing+of+Some+Non-Metallic+Materials&rft.jtitle=Powder+metallurgy+and+metal+ceramics&rft.au=Umansky%2C+V+P&rft.au=Krasovsky%2C+V+P&rft.au=Bashchenko%2C+O+A&rft.date=2021-03-01&rft.pub=Springer+Nature+B.V&rft.issn=1068-1302&rft.eissn=1573-9066&rft.volume=59&rft.issue=11-12&rft.spage=722&rft.epage=729&rft_id=info:doi/10.1007%2Fs11106-021-00207-3&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1068-1302&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1068-1302&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1068-1302&client=summon