Superconvergence of finite volume methods for the second order elliptic problem
This paper derives a superconvergence result for finite volume approximations of the second order elliptic problem by using a L 2 projection post-processing technique. The superconvergence result is applicable to different kind of finite volume methods and to general quasi-uniform meshes.
Uloženo v:
| Vydáno v: | Computer methods in applied mechanics and engineering Ročník 196; číslo 37; s. 3706 - 3712 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Amsterdam
Elsevier B.V
01.08.2007
Elsevier |
| Témata: | |
| ISSN: | 0045-7825, 1879-2138 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper derives a superconvergence result for finite volume approximations of the second order elliptic problem by using a
L
2 projection post-processing technique. The superconvergence result is applicable to different kind of finite volume methods and to general quasi-uniform meshes. |
|---|---|
| Bibliografie: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| ISSN: | 0045-7825 1879-2138 |
| DOI: | 10.1016/j.cma.2006.10.025 |