On the complexity of skew arithmetic

In this paper, we study the complexity of several basic operations on linear differential operators with polynomial coefficients. As in the case of ordinary polynomials, we show that these complexities can be expressed almost linearly in terms of the cost of multiplication.

Uloženo v:
Podrobná bibliografie
Vydáno v:Applicable algebra in engineering, communication and computing Ročník 27; číslo 2; s. 105 - 122
Hlavní autor: van der Hoeven, Joris
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2016
Témata:
ISSN:0938-1279, 1432-0622
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we study the complexity of several basic operations on linear differential operators with polynomial coefficients. As in the case of ordinary polynomials, we show that these complexities can be expressed almost linearly in terms of the cost of multiplication.
ISSN:0938-1279
1432-0622
DOI:10.1007/s00200-015-0269-0