On the complexity of skew arithmetic
In this paper, we study the complexity of several basic operations on linear differential operators with polynomial coefficients. As in the case of ordinary polynomials, we show that these complexities can be expressed almost linearly in terms of the cost of multiplication.
Uložené v:
| Vydané v: | Applicable algebra in engineering, communication and computing Ročník 27; číslo 2; s. 105 - 122 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.03.2016
|
| Predmet: | |
| ISSN: | 0938-1279, 1432-0622 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In this paper, we study the complexity of several basic operations on linear differential operators with polynomial coefficients. As in the case of ordinary polynomials, we show that these complexities can be expressed almost linearly in terms of the cost of multiplication. |
|---|---|
| ISSN: | 0938-1279 1432-0622 |
| DOI: | 10.1007/s00200-015-0269-0 |