On the complexity of skew arithmetic

In this paper, we study the complexity of several basic operations on linear differential operators with polynomial coefficients. As in the case of ordinary polynomials, we show that these complexities can be expressed almost linearly in terms of the cost of multiplication.

Uložené v:
Podrobná bibliografia
Vydané v:Applicable algebra in engineering, communication and computing Ročník 27; číslo 2; s. 105 - 122
Hlavný autor: van der Hoeven, Joris
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2016
Predmet:
ISSN:0938-1279, 1432-0622
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper, we study the complexity of several basic operations on linear differential operators with polynomial coefficients. As in the case of ordinary polynomials, we show that these complexities can be expressed almost linearly in terms of the cost of multiplication.
ISSN:0938-1279
1432-0622
DOI:10.1007/s00200-015-0269-0