A novel adaptive memetic binary optimization algorithm for feature selection
Feature selection (FS) determines the beneficial features in data and decreases the disadvantages of the curse of dimensionality. This work proposes a novel adaptive memetic binary optimization (AMBO) algoraaithm for FS. FS is an NP-Hard binary optimization problem. AMBO is a pure binary optimizatio...
Uložené v:
| Vydané v: | The Artificial intelligence review Ročník 56; číslo 11; s. 13463 - 13520 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Dordrecht
Springer Netherlands
01.11.2023
Springer Springer Nature B.V |
| Predmet: | |
| ISSN: | 0269-2821, 1573-7462 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Feature selection (FS) determines the beneficial features in data and decreases the disadvantages of the curse of dimensionality. This work proposes a novel adaptive memetic binary optimization (AMBO) algoraaithm for FS. FS is an NP-Hard binary optimization problem. AMBO is a pure binary optimization algorithm that works in binary discrete search space. New candidate individuals are adaptively created by a single point, double point, uniform crossovers, and canonical mutation mechanism. Local improvement for the best and worst individuals is provided with a new binary logic-gate based memetic smart local search mechanism. The balance between exploration and exploitation is achieved by adaptively. A diverse dimension dataset experimental setup is provided for determining the success of the proposed method. AMBO firstly was compared with binary particle swarm optimization (BPSO), a genetic algorithm with a random wheel selection strategy (GARW), a genetic algorithm with a tournaments selection strategy (GATS), and a genetic algorithm with a random selection strategy (GARS). AMBO outperformed the opponents on 11 datasets, especially the largest one. Wilcoxon signed-rank test and Friedman’s test were conducted to show the statistical significance of AMBO. For an additional experiment with state-of-art metaheuristic algorithms in the literature, Population reduction binary gaining sharing knowledge-based algorithm with V-4 shaped transfer function (PbGSK-V4), binary salp swarm algorithm (BSSA), binary differential evolution algorithm (BDE), binary dragonfly algorithm (BDA), binary particle swarm optimization algorithm (BPSO), binary bat algorithm (BBA), binary ant lion optimization (BALO) and binary grey wolf optimizer (BGWO) are used in experiments with 21 datasets. The experimental results of the proposed AMBO algorithm are significantly better than the state-of-art algorithms, in terms of classification error rate, fitness function, and average selected features. |
|---|---|
| AbstractList | Feature selection (FS) determines the beneficial features in data and decreases the disadvantages of the curse of dimensionality. This work proposes a novel adaptive memetic binary optimization (AMBO) algoraaithm for FS. FS is an NP-Hard binary optimization problem. AMBO is a pure binary optimization algorithm that works in binary discrete search space. New candidate individuals are adaptively created by a single point, double point, uniform crossovers, and canonical mutation mechanism. Local improvement for the best and worst individuals is provided with a new binary logic-gate based memetic smart local search mechanism. The balance between exploration and exploitation is achieved by adaptively. A diverse dimension dataset experimental setup is provided for determining the success of the proposed method. AMBO firstly was compared with binary particle swarm optimization (BPSO), a genetic algorithm with a random wheel selection strategy (GARW), a genetic algorithm with a tournaments selection strategy (GATS), and a genetic algorithm with a random selection strategy (GARS). AMBO outperformed the opponents on 11 datasets, especially the largest one. Wilcoxon signed-rank test and Friedman's test were conducted to show the statistical significance of AMBO. For an additional experiment with state-of-art metaheuristic algorithms in the literature, Population reduction binary gaining sharing knowledge-based algorithm with V-4 shaped transfer function (PbGSK-V4), binary salp swarm algorithm (BSSA), binary differential evolution algorithm (BDE), binary dragonfly algorithm (BDA), binary particle swarm optimization algorithm (BPSO), binary bat algorithm (BBA), binary ant lion optimization (BALO) and binary grey wolf optimizer (BGWO) are used in experiments with 21 datasets. The experimental results of the proposed AMBO algorithm are significantly better than the state-of-art algorithms, in terms of classification error rate, fitness function, and average selected features. |
| Audience | Academic |
| Author | Cinar, Ahmet Cevahir |
| Author_xml | – sequence: 1 givenname: Ahmet Cevahir surname: Cinar fullname: Cinar, Ahmet Cevahir email: accinar@selcuk.edu.tr, ahmetcevahircinar@gmail.com organization: Department of Computer Engineering, Faculty of Technology, Selçuk University |
| BookMark | eNp9kE9LHDEYh0Ox0NX6BXoKeB7N_2SOi2gVFnppzyGTvLNGZibbJCvop290BKEHySHhl9-T8D6n6GRJCyD0g5JLSoi-KpQIxTrCeNdOhnXmC9pQqXmnW36CNoSpvmOG0W_otJRHQohkgm_QbouX9AQTdsEdanwCPMMMNXo8xMXlZ5xaOscXV2NasJv2Kcf6MOMxZTyCq8cMuMAE_vX-O_o6uqnA-ft-hv7c3vy-vut2v37eX293nefS1M45SmWvRkcEMKeGfjCBMSKcFINzRHnJAgteDFKGgfQEetAQJASuw0iF52foYn33kNPfI5RqH9MxL-1Ly4zSgkpuRGtdrq29m8DGZUw1O99WgDn65m-MLd9qpTjRSusGmBXwOZWSYbQ-1rfBGxgnS4l9lW1X2bbJtm-yrWko-w895Dg3f59DfIVKKy97yB9jfEL9A3-4lF4 |
| CitedBy_id | crossref_primary_10_1002_widm_70026 crossref_primary_10_1093_jcde_qwae051 crossref_primary_10_1007_s10462_025_11244_4 crossref_primary_10_1007_s00500_024_10320_1 crossref_primary_10_1016_j_knosys_2025_114119 crossref_primary_10_1371_journal_pone_0324866 crossref_primary_10_1007_s13042_025_02588_y crossref_primary_10_1109_TNSRE_2025_3557275 crossref_primary_10_1109_ACCESS_2024_3459390 crossref_primary_10_1016_j_asoc_2024_111650 crossref_primary_10_1016_j_ins_2024_120867 |
| Cites_doi | 10.1016/j.eswa.2020.113185 10.1016/j.asoc.2018.02.051 10.1007/s13369-020-04871-2 10.1016/j.ins.2014.09.020 10.1016/j.neucom.2016.03.101 10.1016/j.eswa.2018.08.051 10.1016/j.eswa.2020.113572 10.1016/j.compbiomed.2021.105152 10.1007/s10489-021-02233-5 10.1016/j.neucom.2015.06.083 10.1016/j.swevo.2020.100663 10.1111/coin.12196 10.1109/ACCESS.2019.2906757 10.1109/ACCESS.2020.3013617 10.1016/j.compbiolchem.2007.09.005 10.3390/computation7010012 10.1016/j.eswa.2009.09.064 10.1016/j.eswa.2020.113873 10.1109/TSMCB.2012.2227469 10.1016/j.swevo.2011.11.003 10.1142/S0218001408006351 10.1007/s12293-020-00300-x 10.1109/MCI.2010.936311 10.1016/j.swevo.2018.02.021 10.1007/s12293-015-0153-2 10.1109/TSMCB.2006.883267 10.1007/s00521-020-05210-0 10.1016/j.eswa.2017.07.037 10.1007/s00521-019-04171-3 10.1016/j.asoc.2017.11.006 10.1109/JAS.2019.1911447 10.1016/j.eswa.2018.09.015 10.1016/j.ins.2019.08.040 10.1109/ACCESS.2019.2919991 10.1016/j.knosys.2018.05.009 10.1093/jcde/qwac040 10.1016/j.knosys.2017.12.037 10.1109/ACCESS.2020.3007291 10.3906/elk-1606-122 10.1016/j.eswa.2021.114737 10.1016/j.amc.2006.05.128 10.1109/AICI.2009.438 10.7551/mitpress/1090.001.0001 10.1109/SIBGRAPI.2012.47 10.1007/978-3-642-23247-3 10.1007/978-3-319-93025-1_4 10.1007/978-3-540-71629-7_53 10.1007/s13369-020-04486-7 10.1145/3321707.3321753 10.1109/IDAACS-SWS.2018.8525522 10.1007/978-3-540-39930-8_3 10.1109/ICTCS.2017.43 10.1109/CEC.2019.8789889 10.1007/0-306-48056-5_5 10.1007/978-3-642-16699-0_2 10.1016/j.compbiomed.2022.105675 10.1007/978-1-4419-1665-5_6 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. COPYRIGHT 2023 Springer Copyright Springer Nature B.V. Nov 2023 |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: COPYRIGHT 2023 Springer – notice: Copyright Springer Nature B.V. Nov 2023 |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL ABUWG AFKRA ALSLI ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU CNYFK DWQXO E3H F2A FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M1O P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PRQQA PSYQQ Q9U |
| DOI | 10.1007/s10462-023-10482-8 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland Social Science Premium Collection Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College Library & Information Science Collection ProQuest Central Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Collection Computing Database Library Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Social Sciences ProQuest One Psychology ProQuest Central Basic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) ProQuest One Psychology Computer Science Database ProQuest Central Student Library and Information Science Abstracts (LISA) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences Library & Information Science Collection ProQuest Central (New) Advanced Technologies & Aerospace Collection Business Premium Collection Social Science Premium Collection ABI/INFORM Global ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Library Science ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ProQuest One Social Sciences ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central (subscription) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-7462 |
| EndPage | 13520 |
| ExternalDocumentID | A766307677 10_1007_s10462_023_10482_8 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 23N 28- 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6J9 6NX 77K 7WY 8AO 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AAHNG AAIAL AAJKR AAJSJ AAKKN AANZL AAOBN AARHV AARTL AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABEEZ ABFTD ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABKTR ABMNI ABMOR ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACACY ACBXY ACGFS ACHSB ACHXU ACIHN ACKNC ACMDZ ACMLO ACOKC ACOMO ACREN ACSNA ACULB ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFGXO AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALSLI ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ C24 C6C CAG CCPQU CNYFK COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAO IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M1O M4Y MA- MK~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PSYQQ PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~A9 ~EX 77I AAFWJ AASML AAYXX ABDBE ABFSG ACSTC ADHKG AEZWR AFFHD AFHIU AGQPQ AHPBZ AHWEU AIXLP AYFIA CITATION ICD PHGZM PHGZT PQGLB PRQQA 7SC 7XB 8AL 8FD 8FK E3H F2A JQ2 L.- L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c358t-aa11596fa04e2a6b9b8d2204a54baa06c52d2dc4b55db090e9e7ed5ed37df14c3 |
| IEDL.DBID | 7WY |
| ISICitedReferencesCount | 15 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000969753800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0269-2821 |
| IngestDate | Fri Nov 14 18:38:59 EST 2025 Sat Nov 29 10:30:54 EST 2025 Sat Nov 29 02:43:27 EST 2025 Tue Nov 18 22:22:45 EST 2025 Fri Feb 21 02:41:52 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Keywords | Memetic computing Logic gates Local search Feature selection Binary optimization |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c358t-aa11596fa04e2a6b9b8d2204a54baa06c52d2dc4b55db090e9e7ed5ed37df14c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2867415384 |
| PQPubID | 36790 |
| PageCount | 58 |
| ParticipantIDs | proquest_journals_2867415384 gale_infotracacademiconefile_A766307677 crossref_citationtrail_10_1007_s10462_023_10482_8 crossref_primary_10_1007_s10462_023_10482_8 springer_journals_10_1007_s10462_023_10482_8 |
| PublicationCentury | 2000 |
| PublicationDate | 20231100 2023-11-00 20231101 |
| PublicationDateYYYYMMDD | 2023-11-01 |
| PublicationDate_xml | – month: 11 year: 2023 text: 20231100 |
| PublicationDecade | 2020 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationSubtitle | An International Science and Engineering Journal |
| PublicationTitle | The Artificial intelligence review |
| PublicationTitleAbbrev | Artif Intell Rev |
| PublicationYear | 2023 |
| Publisher | Springer Netherlands Springer Springer Nature B.V |
| Publisher_xml | – name: Springer Netherlands – name: Springer – name: Springer Nature B.V |
| References | Gabardo, Berretta, Moscato (CR24) 2020; 12 Kundu, Mallipeddi (CR30) 2022; 9 Nekkaa, Boughaci (CR47) 2015; 7 Zawbaa, Emary, Grosan, Snasel (CR56) 2018; 42 CR38 Tubishat, Ja'afar, Alswaitti, Mirjalili, Idris, Ismail, Omar (CR54) 2020 Arora, Anand (CR9) 2019; 116 Liu, Zhou, Liu (CR32) 2019; 6 CR34 Mafarja, Aljarah, Heidari, Hammouri, Faris, Ala’M, Mirjalili (CR36) 2018; 145 Babaoglu, Findik, Ülker (CR15) 2010; 37 Zhu, Jia, Ji (CR59) 2010; 5 Albrecht (CR7) 2006; 183 Faris, Mafarja, Heidari, Aljarah, Ala’MMirjaliliFujita (CR22) 2018; 154 Zhang, Gong, Gao, Tian, Sun (CR58) 2020; 507 Gao, Zhou, Luo (CR23) 2020; 8 CR6 CR46 CR44 Alweshah, Al Khalaileh, Gupta, Almomani, Hammouri, Al-Betar (CR5) 2020 CR43 Lee, Kim (CR31) 2015; 293 CR42 CR41 Emary, Zawbaa, Hassanien (CR19) 2016; 213 CR40 Agrawal, Ganesh, Oliva, Mohamed (CR2) 2022 Altun, Kocer, Allahverdi (CR8) 2008; 22 Al-Tashi, Kadir, Rais, Mirjalili, Alhussian (CR4) 2019; 7 Abu Zaher, Berretta, Noman, Moscato (CR1) 2019; 35 Nguyen, Xue, Zhang (CR48) 2020; 54 Ertuğrul, Tağluk (CR21) 2017; 25 Ghosh, Guha, Sarkar, Abraham (CR25) 2019 Ouadfel, Abd Elaziz (CR50) 2020; 159 CR16 CR14 CR13 Maldonado, López (CR33) 2018; 67 Mlakar, Fister, Brest, Potočnik (CR39) 2017; 89 CR10 Mafarja, Mirjalili (CR35) 2018; 62 Emary, Zawbaa, Hassanien (CR20) 2016; 172 CR53 CR51 Mafarja, Aljarah, Faris, Hammouri, Ala’M, Mirjalili (CR37) 2019; 117 Nouri-Moghaddam, Ghazanfari, Fathian (CR49) 2021; 175 Al-Tashi, Abdulkadir, Rais, Mirjalili, Alhussian (CR3) 2020; 8 Neri, Cotta (CR45) 2012; 2 Too, Abdullah, Mohd Saad, Tee (CR52) 2019; 7 Jia, Li, Song, Peng, Lang, Li (CR29) 2019; 7 Zhu, Ong, Dash (CR57) 2007; 37 Awadallah, Al-Betar, Hammouri, Alomari (CR12) 2020 CR28 CR27 CR26 Xue, Zhang, Browne (CR55) 2012; 43 CR60 Awadallah, Hammouri, Al-Betar, Braik, Abd Elaziz (CR11) 2022; 141 Chuang, Chang, Tu, Yang (CR17) 2008; 32 Emine, Ülker (CR18) 2020; 146 AA Albrecht (10482_CR7) 2006; 183 10482_CR6 H Liu (10482_CR32) 2019; 6 10482_CR34 J Too (10482_CR52) 2019; 7 F Neri (10482_CR45) 2012; 2 M Alweshah (10482_CR5) 2020 10482_CR38 U Mlakar (10482_CR39) 2017; 89 10482_CR40 M Ghosh (10482_CR25) 2019 10482_CR43 10482_CR44 MA Awadallah (10482_CR12) 2020 10482_CR41 10482_CR42 M Tubishat (10482_CR54) 2020 HM Zawbaa (10482_CR56) 2018; 42 MA Awadallah (10482_CR11) 2022; 141 M Nekkaa (10482_CR47) 2015; 7 10482_CR26 E Emary (10482_CR20) 2016; 172 10482_CR27 İ Babaoglu (10482_CR15) 2010; 37 10482_CR28 AC Gabardo (10482_CR24) 2020; 12 S Ouadfel (10482_CR50) 2020; 159 10482_CR14 S Arora (10482_CR9) 2019; 116 E Emary (10482_CR19) 2016; 213 H Faris (10482_CR22) 2018; 154 10482_CR13 H Jia (10482_CR29) 2019; 7 Z Zhu (10482_CR59) 2010; 5 AA Altun (10482_CR8) 2008; 22 Q Al-Tashi (10482_CR3) 2020; 8 10482_CR16 10482_CR60 B Emine (10482_CR18) 2020; 146 BH Nguyen (10482_CR48) 2020; 54 M Mafarja (10482_CR36) 2018; 145 L-Y Chuang (10482_CR17) 2008; 32 M Mafarja (10482_CR35) 2018; 62 J Lee (10482_CR31) 2015; 293 M Mafarja (10482_CR37) 2019; 117 Y Gao (10482_CR23) 2020; 8 A Abu Zaher (10482_CR1) 2019; 35 Y Zhang (10482_CR58) 2020; 507 10482_CR46 S Maldonado (10482_CR33) 2018; 67 B Xue (10482_CR55) 2012; 43 ÖF Ertuğrul (10482_CR21) 2017; 25 Z Zhu (10482_CR57) 2007; 37 10482_CR51 P Agrawal (10482_CR2) 2022 10482_CR10 B Nouri-Moghaddam (10482_CR49) 2021; 175 10482_CR53 Q Al-Tashi (10482_CR4) 2019; 7 R Kundu (10482_CR30) 2022; 9 |
| References_xml | – volume: 146 year: 2020 ident: CR18 article-title: An efficient binary social spider algorithm for feature selection problem publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2020.113185 – volume: 67 start-page: 94 year: 2018 end-page: 105 ident: CR33 article-title: Dealing with high-dimensional class-imbalanced datasets: embedded feature selection for SVM classification publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2018.02.051 – year: 2020 ident: CR12 article-title: Binary JAYA algorithm with adaptive mutation for feature selection publication-title: Arab J Sci Eng doi: 10.1007/s13369-020-04871-2 – volume: 293 start-page: 80 year: 2015 end-page: 96 ident: CR31 article-title: Memetic feature selection algorithm for multi-label classification publication-title: Inf Sci doi: 10.1016/j.ins.2014.09.020 – ident: CR16 – volume: 213 start-page: 54 year: 2016 end-page: 65 ident: CR19 article-title: Binary ant lion approaches for feature selection publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.03.101 – ident: CR51 – volume: 116 start-page: 147 year: 2019 end-page: 160 ident: CR9 article-title: Binary butterfly optimization approaches for feature selection publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2018.08.051 – volume: 159 start-page: 113572 year: 2020 ident: CR50 article-title: Enhanced crow search algorithm for feature selection publication-title: Expert Syst with Applic doi: 10.1016/j.eswa.2020.113572 – volume: 141 start-page: 105152 year: 2022 ident: CR11 article-title: Binary Horse herd optimization algorithm with crossover operators for feature selection publication-title: Computers in Biol Med doi: 10.1016/j.compbiomed.2021.105152 – year: 2022 ident: CR2 article-title: S-shaped and v-shaped gaining-sharing knowledge-based algorithm for feature selection publication-title: Appl Intell doi: 10.1007/s10489-021-02233-5 – ident: CR42 – ident: CR46 – volume: 172 start-page: 371 year: 2016 end-page: 381 ident: CR20 article-title: Binary grey wolf optimization approaches for feature selection publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.06.083 – volume: 54 start-page: 100663 year: 2020 ident: CR48 article-title: A survey on swarm intelligence approaches to feature selection in data mining publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2020.100663 – volume: 35 start-page: 156 year: 2019 end-page: 183 ident: CR1 article-title: An adaptive memetic algorithm for feature selection using proximity graphs publication-title: Computational Intell doi: 10.1111/coin.12196 – volume: 7 start-page: 39496 year: 2019 end-page: 39508 ident: CR4 article-title: Binary optimization using hybrid grey wolf optimization for feature selection publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2906757 – volume: 8 start-page: 140936 year: 2020 end-page: 140963 ident: CR23 article-title: An efficient binary equilibrium optimizer algorithm for feature selection publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3013617 – volume: 32 start-page: 29 year: 2008 end-page: 38 ident: CR17 article-title: Improved binary PSO for feature selection using gene expression data publication-title: Comput Biol Chem doi: 10.1016/j.compbiolchem.2007.09.005 – volume: 7 start-page: 12 year: 2019 ident: CR52 article-title: EMG feature selection and classification using a Pbest-guide binary particle swarm optimization publication-title: Computation doi: 10.3390/computation7010012 – ident: CR60 – volume: 37 start-page: 3177 year: 2010 end-page: 3183 ident: CR15 article-title: A comparison of feature selection models utilizing binary particle swarm optimization and genetic algorithm in determining coronary artery disease using support vector machine publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2009.09.064 – year: 2020 ident: CR54 article-title: Dynamic salp swarm algorithm for feature selectio publication-title: Expert Syst with Appl doi: 10.1016/j.eswa.2020.113873 – volume: 43 start-page: 1656 year: 2012 end-page: 1671 ident: CR55 article-title: Particle swarm optimization for feature selection in classification: a multi-objective approach publication-title: IEEE Transac on Cybernet doi: 10.1109/TSMCB.2012.2227469 – ident: CR26 – volume: 2 start-page: 1 year: 2012 end-page: 14 ident: CR45 article-title: Memetic algorithms and memetic computing optimization: a literature review publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2011.11.003 – ident: CR43 – volume: 22 start-page: 585 year: 2008 end-page: 600 ident: CR8 article-title: Genetic algorithm based feature selection level fusion using fingerprint and iris biometrics publication-title: Int J Pattern Recognit Artif Intell doi: 10.1142/S0218001408006351 – volume: 12 start-page: 1 year: 2020 end-page: 13 ident: CR24 article-title: M-Link: a link clustering memetic algorithm for overlapping community detection publication-title: Memetic Comput doi: 10.1007/s12293-020-00300-x – volume: 5 start-page: 41 year: 2010 end-page: 53 ident: CR59 article-title: Towards a memetic feature selection paradigm [application notes] publication-title: IEEE Comput Intell Mag doi: 10.1109/MCI.2010.936311 – ident: CR14 – ident: CR53 – volume: 42 start-page: 29 year: 2018 end-page: 42 ident: CR56 article-title: Large-dimensionality small-instance set feature selection: a hybrid bio-inspired heuristic approach publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2018.02.021 – volume: 183 start-page: 1148 year: 2006 end-page: 1164 ident: CR7 article-title: Stochastic local search for the feature set problem, with applications to microarray data publication-title: Appl Math Comput – volume: 7 start-page: 59 year: 2015 end-page: 73 ident: CR47 article-title: A memetic algorithm with support vector machine for feature selection and classification publication-title: Memetic Computing doi: 10.1007/s12293-015-0153-2 – volume: 37 start-page: 70 year: 2007 end-page: 76 ident: CR57 article-title: Wrapper–filter feature selection algorithm using a memetic framework publication-title: IEEE Transac Syst, Man, Cybernet Part B (cybernetics) doi: 10.1109/TSMCB.2006.883267 – year: 2020 ident: CR5 article-title: The monarch butterfly optimization algorithm for solving feature selection problems publication-title: Neural Comput Applic doi: 10.1007/s00521-020-05210-0 – ident: CR10 – volume: 89 start-page: 129 year: 2017 end-page: 137 ident: CR39 article-title: Multi-objective differential evolution for feature selection in facial expression recognition systems publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2017.07.037 – ident: CR6 – year: 2019 ident: CR25 article-title: A wrapper-filter feature selection technique based on ant colony optimization publication-title: Neural Comput Appl doi: 10.1007/s00521-019-04171-3 – ident: CR40 – ident: CR27 – volume: 62 start-page: 441 year: 2018 end-page: 453 ident: CR35 article-title: Whale optimization approaches for wrapper feature selection publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2017.11.006 – ident: CR44 – volume: 6 start-page: 703 year: 2019 end-page: 715 ident: CR32 article-title: An embedded feature selection method for imbalanced data classification publication-title: IEEE/CAA J Automatica Sinica doi: 10.1109/JAS.2019.1911447 – volume: 117 start-page: 267 year: 2019 end-page: 286 ident: CR37 article-title: Binary grasshopper optimisation algorithm approaches for feature selection problems publication-title: Expert Syst with Appl doi: 10.1016/j.eswa.2018.09.015 – volume: 507 start-page: 67 year: 2020 end-page: 85 ident: CR58 article-title: Binary differential evolution with self-learning for multi-objective feature selection publication-title: Inf Sci doi: 10.1016/j.ins.2019.08.040 – ident: CR38 – ident: CR13 – volume: 7 start-page: 71943 year: 2019 end-page: 71962 ident: CR29 article-title: Spotted hyena optimization algorithm with simulated annealing for feature selection publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2919991 – volume: 154 start-page: 43 year: 2018 end-page: 67 ident: CR22 article-title: An efficient binary salp swarm algorithm with crossover scheme for feature selection problems publication-title: Knowledge-Based Syst doi: 10.1016/j.knosys.2018.05.009 – ident: CR34 – volume: 9 start-page: 949 year: 2022 end-page: 965 ident: CR30 article-title: HFMOEA: a hybrid framework for multi-objective feature selection publication-title: J Comput Design and Eng doi: 10.1093/jcde/qwac040 – volume: 145 start-page: 25 year: 2018 end-page: 45 ident: CR36 article-title: Evolutionary population dynamics and grasshopper optimization approaches for feature selection problems publication-title: Knowledge-Based Syst doi: 10.1016/j.knosys.2017.12.037 – volume: 8 start-page: 125076 year: 2020 end-page: 125096 ident: CR3 article-title: Approaches to multi-objective feature selection: A systematic literature review publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3007291 – ident: CR28 – ident: CR41 – volume: 25 start-page: 3409 year: 2017 end-page: 3420 ident: CR21 article-title: A fast feature selection approach based on extreme learning machine and coefficient of variation publication-title: Turk J Electr Eng Comput Sci doi: 10.3906/elk-1606-122 – volume: 175 year: 2021 ident: CR49 article-title: A novel multi-objective forest optimization algorithm for wrapper feature selection publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2021.114737 – volume: 183 start-page: 1148 year: 2006 ident: 10482_CR7 publication-title: Appl Math Comput doi: 10.1016/j.amc.2006.05.128 – volume: 7 start-page: 59 year: 2015 ident: 10482_CR47 publication-title: Memetic Computing doi: 10.1007/s12293-015-0153-2 – volume: 7 start-page: 39496 year: 2019 ident: 10482_CR4 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2906757 – volume: 7 start-page: 71943 year: 2019 ident: 10482_CR29 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2919991 – volume: 37 start-page: 3177 year: 2010 ident: 10482_CR15 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2009.09.064 – volume: 7 start-page: 12 year: 2019 ident: 10482_CR52 publication-title: Computation doi: 10.3390/computation7010012 – volume: 172 start-page: 371 year: 2016 ident: 10482_CR20 publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.06.083 – ident: 10482_CR27 doi: 10.1109/AICI.2009.438 – ident: 10482_CR28 doi: 10.7551/mitpress/1090.001.0001 – year: 2020 ident: 10482_CR5 publication-title: Neural Comput Applic doi: 10.1007/s00521-020-05210-0 – ident: 10482_CR44 doi: 10.1109/SIBGRAPI.2012.47 – ident: 10482_CR46 doi: 10.1007/978-3-642-23247-3 – volume: 89 start-page: 129 year: 2017 ident: 10482_CR39 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2017.07.037 – volume: 213 start-page: 54 year: 2016 ident: 10482_CR19 publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.03.101 – volume: 12 start-page: 1 year: 2020 ident: 10482_CR24 publication-title: Memetic Comput doi: 10.1007/s12293-020-00300-x – volume: 154 start-page: 43 year: 2018 ident: 10482_CR22 publication-title: Knowledge-Based Syst doi: 10.1016/j.knosys.2018.05.009 – volume: 146 year: 2020 ident: 10482_CR18 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2020.113185 – ident: 10482_CR60 – volume: 141 start-page: 105152 year: 2022 ident: 10482_CR11 publication-title: Computers in Biol Med doi: 10.1016/j.compbiomed.2021.105152 – ident: 10482_CR38 doi: 10.1007/978-3-319-93025-1_4 – year: 2020 ident: 10482_CR54 publication-title: Expert Syst with Appl doi: 10.1016/j.eswa.2020.113873 – volume: 62 start-page: 441 year: 2018 ident: 10482_CR35 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2017.11.006 – volume: 37 start-page: 70 year: 2007 ident: 10482_CR57 publication-title: IEEE Transac Syst, Man, Cybernet Part B (cybernetics) doi: 10.1109/TSMCB.2006.883267 – volume: 175 year: 2021 ident: 10482_CR49 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2021.114737 – volume: 117 start-page: 267 year: 2019 ident: 10482_CR37 publication-title: Expert Syst with Appl doi: 10.1016/j.eswa.2018.09.015 – volume: 507 start-page: 67 year: 2020 ident: 10482_CR58 publication-title: Inf Sci doi: 10.1016/j.ins.2019.08.040 – volume: 5 start-page: 41 year: 2010 ident: 10482_CR59 publication-title: IEEE Comput Intell Mag doi: 10.1109/MCI.2010.936311 – volume: 159 start-page: 113572 year: 2020 ident: 10482_CR50 publication-title: Expert Syst with Applic doi: 10.1016/j.eswa.2020.113572 – ident: 10482_CR6 doi: 10.1007/978-3-540-71629-7_53 – volume: 25 start-page: 3409 year: 2017 ident: 10482_CR21 publication-title: Turk J Electr Eng Comput Sci doi: 10.3906/elk-1606-122 – volume: 116 start-page: 147 year: 2019 ident: 10482_CR9 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2018.08.051 – ident: 10482_CR42 – ident: 10482_CR53 doi: 10.1007/s13369-020-04486-7 – volume: 43 start-page: 1656 year: 2012 ident: 10482_CR55 publication-title: IEEE Transac on Cybernet doi: 10.1109/TSMCB.2012.2227469 – volume: 42 start-page: 29 year: 2018 ident: 10482_CR56 publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2018.02.021 – volume: 8 start-page: 140936 year: 2020 ident: 10482_CR23 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3013617 – year: 2019 ident: 10482_CR25 publication-title: Neural Comput Appl doi: 10.1007/s00521-019-04171-3 – ident: 10482_CR26 doi: 10.1145/3321707.3321753 – volume: 145 start-page: 25 year: 2018 ident: 10482_CR36 publication-title: Knowledge-Based Syst doi: 10.1016/j.knosys.2017.12.037 – volume: 67 start-page: 94 year: 2018 ident: 10482_CR33 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2018.02.051 – year: 2020 ident: 10482_CR12 publication-title: Arab J Sci Eng doi: 10.1007/s13369-020-04871-2 – ident: 10482_CR16 doi: 10.1109/IDAACS-SWS.2018.8525522 – ident: 10482_CR41 doi: 10.1007/978-3-540-39930-8_3 – volume: 22 start-page: 585 year: 2008 ident: 10482_CR8 publication-title: Int J Pattern Recognit Artif Intell doi: 10.1142/S0218001408006351 – ident: 10482_CR34 doi: 10.1109/ICTCS.2017.43 – ident: 10482_CR51 doi: 10.1109/CEC.2019.8789889 – volume: 6 start-page: 703 year: 2019 ident: 10482_CR32 publication-title: IEEE/CAA J Automatica Sinica doi: 10.1109/JAS.2019.1911447 – volume: 35 start-page: 156 year: 2019 ident: 10482_CR1 publication-title: Computational Intell doi: 10.1111/coin.12196 – ident: 10482_CR10 – volume: 2 start-page: 1 year: 2012 ident: 10482_CR45 publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2011.11.003 – ident: 10482_CR40 doi: 10.1007/0-306-48056-5_5 – ident: 10482_CR14 doi: 10.1007/978-3-642-16699-0_2 – year: 2022 ident: 10482_CR2 publication-title: Appl Intell doi: 10.1007/s10489-021-02233-5 – volume: 54 start-page: 100663 year: 2020 ident: 10482_CR48 publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2020.100663 – ident: 10482_CR13 doi: 10.1016/j.compbiomed.2022.105675 – volume: 8 start-page: 125076 year: 2020 ident: 10482_CR3 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3007291 – volume: 9 start-page: 949 year: 2022 ident: 10482_CR30 publication-title: J Comput Design and Eng doi: 10.1093/jcde/qwac040 – ident: 10482_CR43 doi: 10.1007/978-1-4419-1665-5_6 – volume: 32 start-page: 29 year: 2008 ident: 10482_CR17 publication-title: Comput Biol Chem doi: 10.1016/j.compbiolchem.2007.09.005 – volume: 293 start-page: 80 year: 2015 ident: 10482_CR31 publication-title: Inf Sci doi: 10.1016/j.ins.2014.09.020 |
| SSID | ssj0005243 |
| Score | 2.4310849 |
| Snippet | Feature selection (FS) determines the beneficial features in data and decreases the disadvantages of the curse of dimensionality. This work proposes a novel... |
| SourceID | proquest gale crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 13463 |
| SubjectTerms | Algorithms Artificial Intelligence Averages Candidates Classification Computer Science Datasets Evolutionary algorithms Evolutionary computation Experiments Exploitation Feature selection Function words Genetic algorithms Genetics Heuristic methods Logic circuits Mathematical optimization Novels Optimization Optimization algorithms Particle swarm optimization Population growth Rank tests Statistical significance Strategies Tournaments Transfer functions |
| SummonAdditionalLinks | – databaseName: SpringerLink dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5aPXixPrFaJQfBgwa22Ww2ORaxeChF8EFvIa_VQl-0tb_fJM3a-gS9brLZMDOZTDbzfQPAufNwjBIjEcFGI6KwRJwrg5TRlijFrSpC1ZJ23umwbpffRVDYtMx2L68kg6deAbsRipHbY5zrIC4uZOtgI_NsM_6Mfv-0ktixyJXDlCN3oGhEqMz3Y3zYjj475S-3o2HTaVX_N90dsB2DTNhcWMUuWLPDPVAtCzjAuJ73QbsJh6O57UNp5Nj7PTiwA49qhCrAdOHIPR1EpCaU_efRpDd7GUAX6MLCBkpQOA2FdFz7AXhs3Txc36JYXgHpNGMzJKWLBjktZEIsllRxxQzGCZEZUVImVGfYOAUSlWVGJTyx3ObWZNakuSkaRKeHoDIcDe0RgNQQojSnhjc0MZ7DjurUFJkbW-aG5TXQKKUsdOQe9yUw-mLJmuzFJZy4RBCXYDVw-f7OeMG88WvvC6884ZelG1nLiC5w8_MEV6KZu9AqyWnu5lIv9Sviep0KzKgPrVJGauCq1Oey-efvHv-t-wnYwsEk_D-cOqjMJq_2FGzq-aw3nZwFO34DgBLszw priority: 102 providerName: Springer Nature |
| Title | A novel adaptive memetic binary optimization algorithm for feature selection |
| URI | https://link.springer.com/article/10.1007/s10462-023-10482-8 https://www.proquest.com/docview/2867415384 |
| Volume | 56 |
| WOSCitedRecordID | wos000969753800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLink customDbUrl: eissn: 1573-7462 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005243 issn: 0269-2821 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKy4FLSwuILaXyAYlDsUgcP09oW7VCallW5VW4WH4FkPZFd-nv79jrsDzUXriMlDixrXz2zMT2zIfQM9BwSrBgCaPBE-aoJVq7QFzwkTmno2sza8mZHAzUxYUelgW3eTlW2enErKjD1Kc18pdUiWT8GsVezX6QxBqVdlcLhcYdtAGGmicGA_np829HPJan5qjQBH4t6hI0U0LnmKAELBYoIgZepvrDMP2tnv_ZJ83m52Trfzt-H20WxxP3lyNlG63FyQ7a6kgdcJnjD9BZH0-mV3GEbbCzpAvxOI5TpCN2OXQXT-HuuERvYjv6Cm0tvo0xOL-4jTlNKJ5nch0of4g-nBy_P3pNCuUC8Q1XC2IteIhatLZikVrhtFOB0opZzpy1lfCcBgCVOc6Dq3QVdZQx8BgaGdqa-eYRWp9MJ_ExwiIw5rwWQdeehZTXTvgmtBzqtjIo2UN1972NL_nIEy3GyKwyKSeMDGBkMkZG9dDBr3dmy2wctz79PMFo0lSFmr0tEQfQv5T0yvQluFuVFBL6stdhZ8ocnpsVcD30okN_VXxzu7u31_YE3aN53KV1nD20vrj8GZ-iu_5q8X1-uZ9H8D7aODweDM_h6lQSkG-qoyTrtyCH_AvI83cfrwEFV_1s |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQXylMsLeADiANYTRzHsQ8VWgFVq24XDkXqzfgVQNoX3aUVf4rf2LHXYXmI3nrgGicTPz5_M37MDMBTZDgpuDeUM-8ot8xQpayn1rvArVXBtilryaAZDuXxsXq_Bj86X5h4rbLjxETUfuriHvk2kyIqv0ryV7OvNGaNiqerXQqNJSwOwvczXLLNd_bf4Pg-Y2z37dHrPZqzClBX1XJBjUEjSInWFDwwI6yy0jNWcFNza0whXM081pvbuva2UEVQoQm-Dr5qfFtyV6HcK3A1xtWLM-qwfPfLlZLlLT0mFMWlTJmddLKrHheMooZE4uNo1crfFOGf6uCvc9mk7nY3_reOugU3s2FN-suZcBvWwuQObHRJK0jmsLsw6JPJ9DSMiPFmFrmejMM4enISm1yTyRSfjrN3KjGjT9i2xecxQeOetCGFQSXzlDwIy-_Bh0tp031Yn0wn4QEQ4Tm3TgmvSsd9jNsnXOXbGmWbxsumB2U3vtrleOsx7cdIryJFR0xoxIROmNCyBy9-fjNbRhu58O3nETY6UhFKdiZ7VGD9YlAv3W_QnCwa0WBdtjqs6MxRc70CSg9edmhbFf_7vw8vlvYEru8dHQ70YH94sAk3WMJ83LPagvXFybfwCK6508WX-cnjNHsIfLxsFJ4DF19WFg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JbxMxFH4qKUJcKFtFoIAPIA5gdeLxeDkgFGgjqkZRhEDqzXgbQMpGE4r4a_w6nicewiJ664HreObNePz5e8_2WwAeIcMpwYOlnAVPuWOWau0CdcFH7pyOrm6qlgzlaKROTvR4C763sTDJrbLlxIaow9ynPfJ9pkRSfqXi-3V2ixgfDF4sPtNUQSqdtLblNNYQOY7fvuLybfn86ADH-jFjg8O3r17TXGGA-rJSK2otGkRa1LbgkVnhtFOBsYLbijtrC-ErFrAP3FVVcIUuoo4yhiqGUoa6x32Jci_Btixx0dOB7ZeHo_GbXxxM1j57TGiKC5teDtnJgXtcMIr6EmmQo42rflOLfyqHv05pG-U32Pmff9t1uJZNbtJfz5EbsBVnN2GnLWdBMrvdgmGfzOZncUJssIukBcg0TlOMJ3FN0DKZ49VpjlsldvIB-7b6OCVo9pM6NglSybIpK4Ttt-HdhfRpFzqz-SzeASIC585rEXTP85Ay-glfhrpC2VYGJbvQa8fa-JyJPRUEmZhNDumED4P4MA0-jOrC05_PLNZ5SM69-0mCkEkkhZK9zbEW-H0p3ZfpSzQ0CykkfsteixuT2WtpNqDpwrMWeZvmf7_37vnSHsIVBJ8ZHo2O78FV1sA_bWbtQWd1-iXeh8v-bPVpefogTyUC7y8ahj8AgQRgNQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+adaptive+memetic+binary+optimization+algorithm+for+feature+selection&rft.jtitle=The+Artificial+intelligence+review&rft.date=2023-11-01&rft.pub=Springer+Nature+B.V&rft.issn=0269-2821&rft.eissn=1573-7462&rft.volume=56&rft.issue=11&rft.spage=13463&rft.epage=13520&rft_id=info:doi/10.1007%2Fs10462-023-10482-8&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-2821&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-2821&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-2821&client=summon |