An Optimal Online Resource Allocation Algorithm for Energy Harvesting Body Area Networks

In Body Area Networks (BANs), how to achieve energy management to extend the lifetime of the body area networks system is one of the most critical problems. In this paper, we design a body area network system powered by renewable energy, in which the sensors carried by patient with energy harvesting...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algorithms Jg. 11; H. 2; S. 14
Hauptverfasser: Wu, Guangyuan, Chen, Zhigang, Guo, Lin, Wu, Jia
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.02.2018
Schlagworte:
ISSN:1999-4893, 1999-4893
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In Body Area Networks (BANs), how to achieve energy management to extend the lifetime of the body area networks system is one of the most critical problems. In this paper, we design a body area network system powered by renewable energy, in which the sensors carried by patient with energy harvesting module can transmit data to a personal device. We do not require any a priori knowledge of the stochastic nature of energy harvesting and energy consumption. We formulate a user utility optimization problem. We use Lyapunov Optimization techniques to decompose the problem into three sub-problems, i.e., battery management, collecting rate control and transmission power allocation. We propose an online resource allocation algorithm to achieve two major goals: (1) balancing sensors’ energy harvesting and energy consumption while stabilizing the BANs system; and (2) maximizing the user utility. Performance analysis addresses required battery capacity, bounded data queue length and optimality of the proposed algorithm. Simulation results verify the optimization of algorithm.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1999-4893
1999-4893
DOI:10.3390/a11020014