Orthogonal nonnegative matrix factorization problems for clustering: A new formulation and a competitive algorithm
Orthogonal Nonnegative Matrix Factorization (ONMF) with orthogonality constraints on a matrix has been found to provide better clustering results over existing clustering problems. Because of the orthogonality constraint, this optimization problem is difficult to solve. Many of the existing constrai...
Uloženo v:
| Vydáno v: | Annals of operations research Ročník 339; číslo 3; s. 1481 - 1497 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.08.2024
Springer |
| Témata: | |
| ISSN: | 0254-5330, 1572-9338 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Orthogonal Nonnegative Matrix Factorization (ONMF) with orthogonality constraints on a matrix has been found to provide better clustering results over existing clustering problems. Because of the orthogonality constraint, this optimization problem is difficult to solve. Many of the existing constraint-preserving methods deal directly with the constraints using different techniques such as matrix decomposition or computing exponential matrices. Here, we propose an alternative formulation of the ONMF problem which converts the orthogonality constraints into non-convex constraints. To handle the non-convex constraints, a penalty function is applied. The penalized problem is a smooth nonlinear programming problem with quadratic (convex) constraints that can be solved by a proper optimization method. We first make use of an optimization method with two gradient projection steps and then apply a post-processing technique to construct a partition of the clustering problem. Comparative performance analysis of our proposed approach with other available clustering methods on randomly generated test problems and hard synthetic data-sets shows the outperformance of our approach, in terms of the obtained misclassification error rate and the Rand index. |
|---|---|
| AbstractList | Orthogonal Nonnegative Matrix Factorization (ONMF) with orthogonality constraints on a matrix has been found to provide better clustering results over existing clustering problems. Because of the orthogonality constraint, this optimization problem is difficult to solve. Many of the existing constraint-preserving methods deal directly with the constraints using different techniques such as matrix decomposition or computing exponential matrices. Here, we propose an alternative formulation of the ONMF problem which converts the orthogonality constraints into non-convex constraints. To handle the non-convex constraints, a penalty function is applied. The penalized problem is a smooth nonlinear programming problem with quadratic (convex) constraints that can be solved by a proper optimization method. We first make use of an optimization method with two gradient projection steps and then apply a post-processing technique to construct a partition of the clustering problem. Comparative performance analysis of our proposed approach with other available clustering methods on randomly generated test problems and hard synthetic data-sets shows the outperformance of our approach, in terms of the obtained misclassification error rate and the Rand index. |
| Audience | Academic |
| Author | Mahdavi-Amiri, Nezam Dehghanpour, Ja’far |
| Author_xml | – sequence: 1 givenname: Ja’far surname: Dehghanpour fullname: Dehghanpour, Ja’far organization: Faculty of Mathematical Sciences, Sharif University of Technology – sequence: 2 givenname: Nezam orcidid: 0000-0002-2763-4279 surname: Mahdavi-Amiri fullname: Mahdavi-Amiri, Nezam email: nezamm@sharif.edu organization: Faculty of Mathematical Sciences, Sharif University of Technology |
| BookMark | eNp9kUtrIzEQhEVwILaTP5CTIOdxWtK8nJsJ-wgEcknOQqNpTRRmJCPJ2cevX9mTyy5L6ENDUV9Bd63IwnmHhFwz2DCA5jYyKJttAZwXUNYlL_gZWbKq4cVWiHZBlsCrsqiEgAuyivENABhrqyUJTyG9-sE7NdKc6XBQyb4jnVQK9ic1Sicf7O8sekf3wXcjTpEaH6geDzFhsG64ozvq8MdRnQ7jbFWup4pqP-0x2VOiGoeclF6nS3Ju1Bjx6mOvycvXL8_334vHp28P97vHQouqTUXZYFeh7pG1GksBPYMKBdeiNPmYmhsuWM2bHusK6qbu2r5DprttB6ZRvd6KNbmZcwc1orTO-BSUnmzUctdCm3HOeHZt_uPK0-Nkdf6ysVn_C2hnQAcfY0AjtU2nozNoR8lAHiuRcyUyVyJPlcgjyv9B98FOKvz6HBIzFPfHZ2OQb_4Qcl_xM-oP_k2iRg |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3434655 crossref_primary_10_1016_j_neunet_2025_107504 crossref_primary_10_1109_ACCESS_2025_3575517 |
| Cites_doi | 10.1137/110821172 10.1016/j.cam.2020.112785 10.1007/s10479-019-03508-4 10.1007/s101070100263 10.1007/s10107-014-0816-7 10.1016/j.patcog.2021.107996 10.1016/j.asoc.2017.08.032 10.1007/s10479-008-0371-9 10.1145/1150402.1150420 10.1016/j.knosys.2020.106054 10.1109/TPAMI.2020.3008694 10.1016/j.patrec.2020.07.028 10.1016/j.neucom.2014.02.018 10.1103/PhysRevE.80.016118 10.1007/s10489-018-1238-7 10.1137/16M1107863 10.1137/050641983 10.1007/s10479-017-2541-0 10.1002/env.3170050203 10.1007/s10288-020-00445-y 10.1007/s10479-017-2742-6 10.1137/16M1064064 10.1109/ISDA.2009.59 10.1007/s10994-016-5553-0 10.1016/j.patcog.2013.05.015 10.1016/j.ins.2019.12.004 10.1007/s10479-019-03505-7 10.1007/s10107-013-0701-9 10.1007/s13675-015-0048-5 10.1109/TSP.2016.2614491 10.1007/BF01908075 10.1109/ACCESS.2020.2988796 10.1007/s10479-015-1980-8 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 COPYRIGHT 2024 Springer |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 – notice: COPYRIGHT 2024 Springer |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s10479-022-04642-2 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science Business |
| EISSN | 1572-9338 |
| EndPage | 1497 |
| ExternalDocumentID | A808231212 10_1007_s10479_022_04642_2 |
| GeographicLocations | Iran |
| GeographicLocations_xml | – name: Iran |
| GrantInformation_xml | – fundername: Sharif University of Technology grantid: 900439-211400 funderid: http://dx.doi.org/10.13039/501100002398 |
| GroupedDBID | -4X -57 -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 23M 28- 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 7WY 88I 8AO 8FE 8FG 8FL 8TC 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYQZM AZFZN AZQEC B-. BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EBLON EBO EBS EBU EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAO IEA IHE IJ- IKXTQ ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M0N M2P M4Y M7S MA- N2Q N95 N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9M PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS QWB R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZD RZK S16 S1Z S26 S27 S28 S3B SAP SBE SCF SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z88 Z8N Z8U Z92 ZL0 ZMTXR ZYFGU ~8M ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION ICD PHGZM PHGZT PQGLB |
| ID | FETCH-LOGICAL-c358t-47eb5ecde18ce430d105e32c34f02562f231627de650676b8dbe1cb9b0f7adc93 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000770183300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0254-5330 |
| IngestDate | Sat Nov 29 13:48:03 EST 2025 Sat Nov 29 10:29:59 EST 2025 Tue Nov 18 22:24:32 EST 2025 Sat Nov 29 02:36:46 EST 2025 Fri Feb 21 02:38:06 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Isoperimetry problem Clustering Optimization problem with orthogonality constraints Orthogonal Nonnegative Matrix Factorization |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c358t-47eb5ecde18ce430d105e32c34f02562f231627de650676b8dbe1cb9b0f7adc93 |
| ORCID | 0000-0002-2763-4279 |
| PageCount | 17 |
| ParticipantIDs | gale_infotracmisc_A808231212 gale_infotracacademiconefile_A808231212 crossref_citationtrail_10_1007_s10479_022_04642_2 crossref_primary_10_1007_s10479_022_04642_2 springer_journals_10_1007_s10479_022_04642_2 |
| PublicationCentury | 2000 |
| PublicationDate | 20240800 2024-08-00 20240801 |
| PublicationDateYYYYMMDD | 2024-08-01 |
| PublicationDate_xml | – month: 8 year: 2024 text: 20240800 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Annals of operations research |
| PublicationTitleAbbrev | Ann Oper Res |
| PublicationYear | 2024 |
| Publisher | Springer US Springer |
| Publisher_xml | – name: Springer US – name: Springer |
| References | BolteJSabachSTeboulleMProximal alternating linearized minimization for non-convex and non-smooth problemsMath Program201414645949410.1007/s10107-013-0701-9 Dehghanpour-Sahron, J., & Mahdavi-Amiri, N. (2020) A competitive optimization approach for data clustering and orthogonal non-negative matrix factorization. 4OR, 27 pages, , https://doi.org/10.1007/s10288-020-00445-y. TosyaliAKimJChoiJNew node anomaly detection algorithm based on nonnegative matrix factorization for directed citation networksAnn Oper Res202028845747410.1007/s10479-019-03508-4 YangBFuXSidiropoulosNDLearning from hidden traits: Joint factor analysis and latent clusteringIEEE Transactions on Signal Processing201765125626910.1109/TSP.2016.2614491 http://cs.joensuu.fi/sipu/datasets/. Dolan E D, & Moré J J (2002). Benchmarking optimization software with performance profiles. Mathematical Programming,91(2), 201–213. Peng, S., Ser, W., Chen, B., & Lin, Z. (2020). Robust orthogonal nonnegative matrix tri-factorization for data representation. Knowledge-Based Systems,201, 106054. FardMMThonetTGaussierEDeep k-means: Jointly clustering with k-means and learning representationsPattern Recognition Letters202013818519210.1016/j.patrec.2020.07.028 PanJNgMKOrthogonal nonnegative matrix factorization by sparsity and nuclear norm optimizationSIAM Journal on Matrix Analysis and Applications201839285687510.1137/16M1107863 Del Buono N. (2009). A penalty function for computing orthogonal non-negative matrix factorizations. (pp. 1001–1005) Facchinei, F., & Pang, J. S. (2007). Finite-dimensional variational inequalities and complementarity problems. Springer Science and Business Media. KimuraKKudoMTanakaYA column-wise update algorithm for nonnegative matrix factorization in Bregman divergence with an orthogonal constraintMachine learning2016103228530610.1007/s10994-016-5553-0 HuangSKangZXuZLiuQRobust deep k-means: An effective and simple method for data clusteringPattern Recognition202111710799610.1016/j.patcog.2021.107996 LancichinettiAFortunatoSBenchmarks for testing community detection algorithms on directed and weighted graphs with overlapping communitiesPhysical Review E20098001611810.1103/PhysRevE.80.016118 Ding, C., Li, T., Peng, W., & Park, H. (2006). Orthogonal nonnegative matrix t-factorizations for clustering. (pp. 126–135) ShefiRTeboulleMOn the rate of convergence of the proximal alternating linearized minimization algorithm for convex problemsEURO J Comput Optim20164274610.1007/s13675-015-0048-5 FräntiPSieranojaSK-means properties on six clustering benchmark datasetsApplied Intelligence201848124743475910.1007/s10489-018-1238-7 McQueenJSome methods for classification and analysis of multivariate observationsComputer and Chemistry19674257272 DinlerDTuralMKOzdemirelNECentroid based Tree-Structured Data Clustering Using Vertex/Edge Overlap and Graph Edit DistanceAnn Oper Res202028918512210.1007/s10479-019-03505-7 XiaSPengDMengDZhangCWangGGiemEChenZA fast adaptive k-means with no boundsIEEE Transactions on Pattern Analysis and Machine Intelligence202010.1109/TPAMI.2020.3008694 BertsekasDPNonlinear Programming19992Belmont, MassachusettsAthena Scientific YuSSChuSWWangCMChanYKChangTCTwo improved k-means algorithmsApplied Soft Computing20186874775510.1016/j.asoc.2017.08.032 PaateroPTapperUPositive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data valuesEnvironmetrics19945211112610.1002/env.3170050203 Arthur, D., Sergi, V. (2007) K-means++: The Advantages of Careful Seeding. SODA ’ 07: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, 1027-1035 . BankerRDChangHZhengZOn the use of super-efficiency procedures for ranking efficient units and identifying outliersAnn Oper Res20172501213510.1007/s10479-015-1980-8 KimJParkHFast non-negative matrix factorization: An active-set-like method and comparisonsSIAM Journal on Scientific Computing20113363261328110.1137/110821172 LawrenceHPhippsAComparing partitionsJournal of Classification19852119321810.1007/BF01908075 Ng, A. Y., Jordan, M. I., & Weiss, Y (2002) On spectral clustering: analysis and an algorithm. In: Advances in Neural Information Processing Systems, 849-856 . DaneshgarAJavadiRRazaviSSClustering and outlier detection using isoperimetric number of treesPattern Recognition201346123371338210.1016/j.patcog.2013.05.015 SinagaKPYangMSUnsupervised K-means clustering algorithm. IEEEAccess20208807168072710.1109/ACCESS.2020.2988796 PengJWeiYApproximating k-means-type clustering via semidefinite programmingSIAM Journal on Optimization200718118620510.1137/050641983 HePXuXDingJFanBLow-rank nonnegative matrix factorization on Stiefel manifoldInformation Sciences202051413114810.1016/j.ins.2019.12.004 PompiliFGillisNAbsilPAGlineurFTwo algorithms for orthogonal non-negative matrix factorization with application to clusteringNeurocomputing2014141152510.1016/j.neucom.2014.02.018 QinZWanTZhaoHHybrid clustering of data and vague concepts based on labels semanticsAnn Oper Res2017256239341610.1007/s10479-017-2541-0 MorenoSPereiraJYushimitoWA hybrid K-means and integer programming method for commercial territory design: a case study in meat distributionAnn Oper Res202028618711710.1007/s10479-017-2742-6 http://www.vision.caltech.edu/lihi/Demos/SelfTuningClustering.html. Bauckhage, C. K-means clustering is matrix factorization. arXiv preprint arXiv:1512.07548, (2015). Pock, T., & SabachS. (2016). Inertial proximal alternating linearized minimization (iPALM) for nonconvex and nonsmooth problems. SIAM Journal on Imaging Sciences,9(4), 1756–1787. Kimura, K., Tanaka, Y., & Kudo, M. (2015). A fast hierarchical alternating least squares algorithm for orthogonal nonnegative matrix factorization. JiangBDaiYHA framework of constraint preserving update schemes for optimization on Stiefel manifoldMathematical Programming2015153253557510.1007/s10107-014-0816-7 LiWLiJLiuXDongLTwo fast vector-wise update algorithms for orthogonal nonnegative matrix factorization with sparsity constraintJournal of Computational and Applied Mathematics202037511278510.1016/j.cam.2020.112785 DuanLXuLLiuYCluster-based outlier detection. AnnOper Res200916815116810.1007/s10479-008-0371-9 B Yang (4642_CR39) 2017; 65 4642_CR27 S Moreno (4642_CR26) 2020; 286 DP Bertsekas (4642_CR4) 1999 P He (4642_CR16) 2020; 514 A Lancichinetti (4642_CR21) 2009; 80 4642_CR3 A Daneshgar (4642_CR6) 2013; 46 4642_CR1 K Kimura (4642_CR20) 2016; 103 P Paatero (4642_CR28) 1994; 5 J Pan (4642_CR29) 2018; 39 4642_CR42 4642_CR8 4642_CR9 J McQueen (4642_CR24) 1967; 4 4642_CR41 4642_CR7 D Dinler (4642_CR10) 2020; 289 4642_CR19 B Jiang (4642_CR17) 2015; 153 S Huang (4642_CR22) 2021; 117 MM Fard (4642_CR14) 2020; 138 J Bolte (4642_CR5) 2014; 146 4642_CR13 F Pompili (4642_CR33) 2014; 141 A Tosyali (4642_CR37) 2020; 288 R Shefi (4642_CR35) 2016; 4 SS Yu (4642_CR40) 2018; 68 J Peng (4642_CR30) 2007; 18 W Li (4642_CR25) 2020; 375 H Lawrence (4642_CR23) 1985; 2 KP Sinaga (4642_CR36) 2020; 8 J Kim (4642_CR18) 2011; 33 P Fränti (4642_CR15) 2018; 48 Z Qin (4642_CR34) 2017; 256 4642_CR11 L Duan (4642_CR12) 2009; 168 4642_CR31 S Xia (4642_CR38) 2020 4642_CR32 RD Banker (4642_CR2) 2017; 250 |
| References_xml | – reference: Ding, C., Li, T., Peng, W., & Park, H. (2006). Orthogonal nonnegative matrix t-factorizations for clustering. (pp. 126–135) – reference: http://cs.joensuu.fi/sipu/datasets/. – reference: QinZWanTZhaoHHybrid clustering of data and vague concepts based on labels semanticsAnn Oper Res2017256239341610.1007/s10479-017-2541-0 – reference: HuangSKangZXuZLiuQRobust deep k-means: An effective and simple method for data clusteringPattern Recognition202111710799610.1016/j.patcog.2021.107996 – reference: BankerRDChangHZhengZOn the use of super-efficiency procedures for ranking efficient units and identifying outliersAnn Oper Res20172501213510.1007/s10479-015-1980-8 – reference: ShefiRTeboulleMOn the rate of convergence of the proximal alternating linearized minimization algorithm for convex problemsEURO J Comput Optim20164274610.1007/s13675-015-0048-5 – reference: BertsekasDPNonlinear Programming19992Belmont, MassachusettsAthena Scientific – reference: Dolan E D, & Moré J J (2002). Benchmarking optimization software with performance profiles. Mathematical Programming,91(2), 201–213. – reference: McQueenJSome methods for classification and analysis of multivariate observationsComputer and Chemistry19674257272 – reference: BolteJSabachSTeboulleMProximal alternating linearized minimization for non-convex and non-smooth problemsMath Program201414645949410.1007/s10107-013-0701-9 – reference: Arthur, D., Sergi, V. (2007) K-means++: The Advantages of Careful Seeding. SODA ’ 07: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, 1027-1035 . – reference: TosyaliAKimJChoiJNew node anomaly detection algorithm based on nonnegative matrix factorization for directed citation networksAnn Oper Res202028845747410.1007/s10479-019-03508-4 – reference: KimJParkHFast non-negative matrix factorization: An active-set-like method and comparisonsSIAM Journal on Scientific Computing20113363261328110.1137/110821172 – reference: FräntiPSieranojaSK-means properties on six clustering benchmark datasetsApplied Intelligence201848124743475910.1007/s10489-018-1238-7 – reference: YuSSChuSWWangCMChanYKChangTCTwo improved k-means algorithmsApplied Soft Computing20186874775510.1016/j.asoc.2017.08.032 – reference: FardMMThonetTGaussierEDeep k-means: Jointly clustering with k-means and learning representationsPattern Recognition Letters202013818519210.1016/j.patrec.2020.07.028 – reference: LiWLiJLiuXDongLTwo fast vector-wise update algorithms for orthogonal nonnegative matrix factorization with sparsity constraintJournal of Computational and Applied Mathematics202037511278510.1016/j.cam.2020.112785 – reference: DuanLXuLLiuYCluster-based outlier detection. AnnOper Res200916815116810.1007/s10479-008-0371-9 – reference: PompiliFGillisNAbsilPAGlineurFTwo algorithms for orthogonal non-negative matrix factorization with application to clusteringNeurocomputing2014141152510.1016/j.neucom.2014.02.018 – reference: XiaSPengDMengDZhangCWangGGiemEChenZA fast adaptive k-means with no boundsIEEE Transactions on Pattern Analysis and Machine Intelligence202010.1109/TPAMI.2020.3008694 – reference: http://www.vision.caltech.edu/lihi/Demos/SelfTuningClustering.html. – reference: Dehghanpour-Sahron, J., & Mahdavi-Amiri, N. (2020) A competitive optimization approach for data clustering and orthogonal non-negative matrix factorization. 4OR, 27 pages, , https://doi.org/10.1007/s10288-020-00445-y. – reference: PanJNgMKOrthogonal nonnegative matrix factorization by sparsity and nuclear norm optimizationSIAM Journal on Matrix Analysis and Applications201839285687510.1137/16M1107863 – reference: PaateroPTapperUPositive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data valuesEnvironmetrics19945211112610.1002/env.3170050203 – reference: Facchinei, F., & Pang, J. S. (2007). Finite-dimensional variational inequalities and complementarity problems. Springer Science and Business Media. – reference: Kimura, K., Tanaka, Y., & Kudo, M. (2015). A fast hierarchical alternating least squares algorithm for orthogonal nonnegative matrix factorization. – reference: MorenoSPereiraJYushimitoWA hybrid K-means and integer programming method for commercial territory design: a case study in meat distributionAnn Oper Res202028618711710.1007/s10479-017-2742-6 – reference: Ng, A. Y., Jordan, M. I., & Weiss, Y (2002) On spectral clustering: analysis and an algorithm. In: Advances in Neural Information Processing Systems, 849-856 . – reference: DinlerDTuralMKOzdemirelNECentroid based Tree-Structured Data Clustering Using Vertex/Edge Overlap and Graph Edit DistanceAnn Oper Res202028918512210.1007/s10479-019-03505-7 – reference: JiangBDaiYHA framework of constraint preserving update schemes for optimization on Stiefel manifoldMathematical Programming2015153253557510.1007/s10107-014-0816-7 – reference: Del Buono N. (2009). A penalty function for computing orthogonal non-negative matrix factorizations. (pp. 1001–1005) – reference: PengJWeiYApproximating k-means-type clustering via semidefinite programmingSIAM Journal on Optimization200718118620510.1137/050641983 – reference: Peng, S., Ser, W., Chen, B., & Lin, Z. (2020). Robust orthogonal nonnegative matrix tri-factorization for data representation. Knowledge-Based Systems,201, 106054. – reference: HePXuXDingJFanBLow-rank nonnegative matrix factorization on Stiefel manifoldInformation Sciences202051413114810.1016/j.ins.2019.12.004 – reference: LancichinettiAFortunatoSBenchmarks for testing community detection algorithms on directed and weighted graphs with overlapping communitiesPhysical Review E20098001611810.1103/PhysRevE.80.016118 – reference: Bauckhage, C. K-means clustering is matrix factorization. arXiv preprint arXiv:1512.07548, (2015). – reference: KimuraKKudoMTanakaYA column-wise update algorithm for nonnegative matrix factorization in Bregman divergence with an orthogonal constraintMachine learning2016103228530610.1007/s10994-016-5553-0 – reference: DaneshgarAJavadiRRazaviSSClustering and outlier detection using isoperimetric number of treesPattern Recognition201346123371338210.1016/j.patcog.2013.05.015 – reference: Pock, T., & SabachS. (2016). Inertial proximal alternating linearized minimization (iPALM) for nonconvex and nonsmooth problems. SIAM Journal on Imaging Sciences,9(4), 1756–1787. – reference: SinagaKPYangMSUnsupervised K-means clustering algorithm. IEEEAccess20208807168072710.1109/ACCESS.2020.2988796 – reference: YangBFuXSidiropoulosNDLearning from hidden traits: Joint factor analysis and latent clusteringIEEE Transactions on Signal Processing201765125626910.1109/TSP.2016.2614491 – reference: LawrenceHPhippsAComparing partitionsJournal of Classification19852119321810.1007/BF01908075 – volume: 33 start-page: 3261 issue: 6 year: 2011 ident: 4642_CR18 publication-title: SIAM Journal on Scientific Computing doi: 10.1137/110821172 – volume: 4 start-page: 257 year: 1967 ident: 4642_CR24 publication-title: Computer and Chemistry – volume: 375 start-page: 112785 year: 2020 ident: 4642_CR25 publication-title: Journal of Computational and Applied Mathematics doi: 10.1016/j.cam.2020.112785 – volume: 288 start-page: 457 year: 2020 ident: 4642_CR37 publication-title: Ann Oper Res doi: 10.1007/s10479-019-03508-4 – ident: 4642_CR11 doi: 10.1007/s101070100263 – volume: 153 start-page: 535 issue: 2 year: 2015 ident: 4642_CR17 publication-title: Mathematical Programming doi: 10.1007/s10107-014-0816-7 – volume: 117 start-page: 107996 year: 2021 ident: 4642_CR22 publication-title: Pattern Recognition doi: 10.1016/j.patcog.2021.107996 – volume: 68 start-page: 747 year: 2018 ident: 4642_CR40 publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2017.08.032 – volume: 168 start-page: 151 year: 2009 ident: 4642_CR12 publication-title: Oper Res doi: 10.1007/s10479-008-0371-9 – ident: 4642_CR9 doi: 10.1145/1150402.1150420 – ident: 4642_CR31 doi: 10.1016/j.knosys.2020.106054 – year: 2020 ident: 4642_CR38 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2020.3008694 – volume: 138 start-page: 185 year: 2020 ident: 4642_CR14 publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2020.07.028 – ident: 4642_CR19 – volume: 141 start-page: 15 year: 2014 ident: 4642_CR33 publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.02.018 – ident: 4642_CR3 – ident: 4642_CR1 – ident: 4642_CR41 – volume: 80 start-page: 016118 year: 2009 ident: 4642_CR21 publication-title: Physical Review E doi: 10.1103/PhysRevE.80.016118 – volume: 48 start-page: 4743 issue: 12 year: 2018 ident: 4642_CR15 publication-title: Applied Intelligence doi: 10.1007/s10489-018-1238-7 – volume-title: Nonlinear Programming year: 1999 ident: 4642_CR4 – volume: 39 start-page: 856 issue: 2 year: 2018 ident: 4642_CR29 publication-title: SIAM Journal on Matrix Analysis and Applications doi: 10.1137/16M1107863 – volume: 18 start-page: 186 issue: 1 year: 2007 ident: 4642_CR30 publication-title: SIAM Journal on Optimization doi: 10.1137/050641983 – volume: 256 start-page: 393 issue: 2 year: 2017 ident: 4642_CR34 publication-title: Ann Oper Res doi: 10.1007/s10479-017-2541-0 – volume: 5 start-page: 111 issue: 2 year: 1994 ident: 4642_CR28 publication-title: Environmetrics doi: 10.1002/env.3170050203 – ident: 4642_CR7 doi: 10.1007/s10288-020-00445-y – volume: 286 start-page: 87 issue: 1 year: 2020 ident: 4642_CR26 publication-title: Ann Oper Res doi: 10.1007/s10479-017-2742-6 – ident: 4642_CR32 doi: 10.1137/16M1064064 – ident: 4642_CR8 doi: 10.1109/ISDA.2009.59 – volume: 103 start-page: 285 issue: 2 year: 2016 ident: 4642_CR20 publication-title: Machine learning doi: 10.1007/s10994-016-5553-0 – volume: 46 start-page: 3371 issue: 12 year: 2013 ident: 4642_CR6 publication-title: Pattern Recognition doi: 10.1016/j.patcog.2013.05.015 – ident: 4642_CR13 – volume: 514 start-page: 131 year: 2020 ident: 4642_CR16 publication-title: Information Sciences doi: 10.1016/j.ins.2019.12.004 – volume: 289 start-page: 85 issue: 1 year: 2020 ident: 4642_CR10 publication-title: Ann Oper Res doi: 10.1007/s10479-019-03505-7 – volume: 146 start-page: 459 year: 2014 ident: 4642_CR5 publication-title: Math Program doi: 10.1007/s10107-013-0701-9 – volume: 4 start-page: 27 year: 2016 ident: 4642_CR35 publication-title: EURO J Comput Optim doi: 10.1007/s13675-015-0048-5 – volume: 65 start-page: 256 issue: 1 year: 2017 ident: 4642_CR39 publication-title: IEEE Transactions on Signal Processing doi: 10.1109/TSP.2016.2614491 – volume: 2 start-page: 193 issue: 1 year: 1985 ident: 4642_CR23 publication-title: Journal of Classification doi: 10.1007/BF01908075 – ident: 4642_CR42 – ident: 4642_CR27 – volume: 8 start-page: 80716 year: 2020 ident: 4642_CR36 publication-title: Access doi: 10.1109/ACCESS.2020.2988796 – volume: 250 start-page: 21 issue: 1 year: 2017 ident: 4642_CR2 publication-title: Ann Oper Res doi: 10.1007/s10479-015-1980-8 |
| SSID | ssj0001185 |
| Score | 2.434457 |
| Snippet | Orthogonal Nonnegative Matrix Factorization (ONMF) with orthogonality constraints on a matrix has been found to provide better clustering results over existing... |
| SourceID | gale crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1481 |
| SubjectTerms | Algorithms Business and Management Clustering (Computers) Combinatorics Data mining Mathematical optimization Operations Research/Decision Theory Original Research Theory of Computation |
| Title | Orthogonal nonnegative matrix factorization problems for clustering: A new formulation and a competitive algorithm |
| URI | https://link.springer.com/article/10.1007/s10479-022-04642-2 |
| Volume | 339 |
| WOSCitedRecordID | wos000770183300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1572-9338 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001185 issn: 0254-5330 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS9xAEB6KiuiD2rPiVS37IPigC5fsXjbx7SiKD8WWWsW3kJ3dnMLdKXex9M_vzN7GeiBCfQvJZrLZHzPfMjPfABwimVWrTSa10kbq3KeyQONkQVeYKKNU4Cm4-WYuL_Pb2-JHTAqbtdHurUsyaOoXyW7aFJKjz9kdl0pSvMtk7nIu2PDz6uZZ_xJkDoGLdPSRHDsZU2Vel7FgjlqlvOgSDZbmfPN9fdyCjYgsxWC-FD7CBz_pwGob2N6BzbaAg4j7uQPrL9gIt2H6fdrcPQwZmosJx78MAym4GDOL_x8xr8wT0zZFLEQzEwR6BY6emG-BpJyKgSCgznfHsTCYqCZOVAIDQA-RSqIaDUlSczf-BNfnZ7--XshYkkGi6ueN1Mbbvkfnkxy9Vj1H8MyrFJWuGTylNcHFLDXOE_DLTGZzZ32CtrC92lQOC7UDS_QHfhdE39FBOCuYIL_WmUNLJxdte1jU2jptVBeSdmZKjHzlXDZjVP5jWubRLmm0yzDaZdqF4-d3HudsHW-2PuIJL3krk2SsYkYC9Y9JscpBzm7IhIx7F_YXWtIWxIXHJ-1yKKMKmL3x3c__13wP1lJCUvOow31YaqZP_gBW8HdzP5t-CWv_LwYr_Kc |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6hDcF4YFCYKAzwAxIPYKmJ3TjhrUJMQ5SCYEx7s-Kz0yG13dRmE38-d64zVglNgrcocS6Of9x91t19B_AKyaw6bQqplTZSlyGXFRovK7rCTBmlIk_B8dhMJuXJSfU1JYWtumj3ziUZNfW1ZDdtKsnR5-yOyyUp3m1NFosZ8799P77SvwSZY-AiHX0kx06mVJm_y9gwR51S3nSJRktzsPt_fXwA9xOyFKP1UngIt8KiB3e6wPYe7HYFHETazz24d42N8BEsvyzb07MpQ3Ox4PiXaSQFF3Nm8f8l1pV5UtqmSIVoVoJAr8DZBfMtkJR3YiQIqPPdeSoMJuqFF7XACNBjpJKoZ1OS1J7OH8OPgw9H7w9lKskgUQ3LVmoT3DCgD1mJQauBJ3gWVI5KNwye8obgYpEbHwj4FaZwpXchQ1e5QWNqj5Xagy36g_AExNDTQbiomCC_0YVHRycX7QZYNdp5bVQfsm5mLCa-ci6bMbN_mJZ5tC2Nto2jbfM-vLl653zN1nFj69c84Za3MknGOmUkUP-YFMuOSnZDZmTc-7C_0ZK2IG48ftstB5tUwOqG7z79t-Yv4e7h0eexHX-cfHoGOzmhqnUE4j5stcuL8Bxu42X7c7V8EffBb-Rl_4s |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swED5NgND2AKwbogw2PyDtYbNoYjdO9lZtVJuGChIb4s2Kf6QgtR1qA9qfvzvHgVaakKa9RYlzcWyf_Vn-7juAI4vLqpEq41JIxWXuU15Y5XiBVzYRSoigU3B5qkaj_OqqOF-K4g9s9_ZIsolpIJWmWX1866rjpcA3qQpOTHQ6mks5TsLrkoj0tF-_uHyYixE-BxIjboM48Shj2MzfbawsTe0EvXo8Glad4fb_13cHtiLiZINmiLyEZ37Wgc2W8N6B7TaxA4t-3oEXSyqFr2B-Nq-vf40JsrMZ8WLGQSycTUnd_zdrMvbEcE4WE9QsGIJhZid3pMOAVj6xAUMAT3enMWEYK2eOlcwG4B4YTKycjNFSfT19DT-HJz8-f-UxVQO3op_XXCpv-t46n-TWS9FzCNu8SK2QFYGqtEIYmaXKeQSEmcpM7oxPrClMr1Kls4XYhTX8A78HrO9wg5wVJJxfycxZgzsaaXq2qKRxUokuJG0vaRt1zCmdxkQ_KjBTa2tsbR1aW6dd-PDwzm2j4vFk6ffU-ZpcHC3bMkYqYP1ILEsPcjqeTHDR78LBSkl0Tbvy-GM7NHScGhZPfHf_34q_g83zL0N9-m30_Q08TxFsNcTEA1ir53f-EDbsfX2zmL8NLvEHlnoIfg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Orthogonal+nonnegative+matrix+factorization+problems+for+clustering%3A+A+new+formulation+and+a+competitive+algorithm&rft.jtitle=Annals+of+operations+research&rft.au=Dehghanpour%2C+Ja%27far&rft.au=Mahdavi-Amiri%2C+Nezam&rft.date=2024-08-01&rft.pub=Springer&rft.issn=0254-5330&rft.volume=339&rft.issue=3&rft.spage=1481&rft_id=info:doi/10.1007%2Fs10479-022-04642-2&rft.externalDocID=A808231212 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0254-5330&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0254-5330&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0254-5330&client=summon |