Orthogonal nonnegative matrix factorization problems for clustering: A new formulation and a competitive algorithm

Orthogonal Nonnegative Matrix Factorization (ONMF) with orthogonality constraints on a matrix has been found to provide better clustering results over existing clustering problems. Because of the orthogonality constraint, this optimization problem is difficult to solve. Many of the existing constrai...

Full description

Saved in:
Bibliographic Details
Published in:Annals of operations research Vol. 339; no. 3; pp. 1481 - 1497
Main Authors: Dehghanpour, Ja’far, Mahdavi-Amiri, Nezam
Format: Journal Article
Language:English
Published: New York Springer US 01.08.2024
Springer
Subjects:
ISSN:0254-5330, 1572-9338
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Orthogonal Nonnegative Matrix Factorization (ONMF) with orthogonality constraints on a matrix has been found to provide better clustering results over existing clustering problems. Because of the orthogonality constraint, this optimization problem is difficult to solve. Many of the existing constraint-preserving methods deal directly with the constraints using different techniques such as matrix decomposition or computing exponential matrices. Here, we propose an alternative formulation of the ONMF problem which converts the orthogonality constraints into non-convex constraints. To handle the non-convex constraints, a penalty function is applied. The penalized problem is a smooth nonlinear programming problem with quadratic (convex) constraints that can be solved by a proper optimization method. We first make use of an optimization method with two gradient projection steps and then apply a post-processing technique to construct a partition of the clustering problem. Comparative performance analysis of our proposed approach with other available clustering methods on randomly generated test problems and hard synthetic data-sets shows the outperformance of our approach, in terms of the obtained misclassification error rate and the Rand index.
AbstractList Orthogonal Nonnegative Matrix Factorization (ONMF) with orthogonality constraints on a matrix has been found to provide better clustering results over existing clustering problems. Because of the orthogonality constraint, this optimization problem is difficult to solve. Many of the existing constraint-preserving methods deal directly with the constraints using different techniques such as matrix decomposition or computing exponential matrices. Here, we propose an alternative formulation of the ONMF problem which converts the orthogonality constraints into non-convex constraints. To handle the non-convex constraints, a penalty function is applied. The penalized problem is a smooth nonlinear programming problem with quadratic (convex) constraints that can be solved by a proper optimization method. We first make use of an optimization method with two gradient projection steps and then apply a post-processing technique to construct a partition of the clustering problem. Comparative performance analysis of our proposed approach with other available clustering methods on randomly generated test problems and hard synthetic data-sets shows the outperformance of our approach, in terms of the obtained misclassification error rate and the Rand index.
Audience Academic
Author Mahdavi-Amiri, Nezam
Dehghanpour, Ja’far
Author_xml – sequence: 1
  givenname: Ja’far
  surname: Dehghanpour
  fullname: Dehghanpour, Ja’far
  organization: Faculty of Mathematical Sciences, Sharif University of Technology
– sequence: 2
  givenname: Nezam
  orcidid: 0000-0002-2763-4279
  surname: Mahdavi-Amiri
  fullname: Mahdavi-Amiri, Nezam
  email: nezamm@sharif.edu
  organization: Faculty of Mathematical Sciences, Sharif University of Technology
BookMark eNp9kUtrIzEQhEVwILaTP5CTIOdxWtK8nJsJ-wgEcknOQqNpTRRmJCPJ2cevX9mTyy5L6ENDUV9Bd63IwnmHhFwz2DCA5jYyKJttAZwXUNYlL_gZWbKq4cVWiHZBlsCrsqiEgAuyivENABhrqyUJTyG9-sE7NdKc6XBQyb4jnVQK9ic1Sicf7O8sekf3wXcjTpEaH6geDzFhsG64ozvq8MdRnQ7jbFWup4pqP-0x2VOiGoeclF6nS3Ju1Bjx6mOvycvXL8_334vHp28P97vHQouqTUXZYFeh7pG1GksBPYMKBdeiNPmYmhsuWM2bHusK6qbu2r5DprttB6ZRvd6KNbmZcwc1orTO-BSUnmzUctdCm3HOeHZt_uPK0-Nkdf6ysVn_C2hnQAcfY0AjtU2nozNoR8lAHiuRcyUyVyJPlcgjyv9B98FOKvz6HBIzFPfHZ2OQb_4Qcl_xM-oP_k2iRg
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3434655
crossref_primary_10_1016_j_neunet_2025_107504
crossref_primary_10_1109_ACCESS_2025_3575517
Cites_doi 10.1137/110821172
10.1016/j.cam.2020.112785
10.1007/s10479-019-03508-4
10.1007/s101070100263
10.1007/s10107-014-0816-7
10.1016/j.patcog.2021.107996
10.1016/j.asoc.2017.08.032
10.1007/s10479-008-0371-9
10.1145/1150402.1150420
10.1016/j.knosys.2020.106054
10.1109/TPAMI.2020.3008694
10.1016/j.patrec.2020.07.028
10.1016/j.neucom.2014.02.018
10.1103/PhysRevE.80.016118
10.1007/s10489-018-1238-7
10.1137/16M1107863
10.1137/050641983
10.1007/s10479-017-2541-0
10.1002/env.3170050203
10.1007/s10288-020-00445-y
10.1007/s10479-017-2742-6
10.1137/16M1064064
10.1109/ISDA.2009.59
10.1007/s10994-016-5553-0
10.1016/j.patcog.2013.05.015
10.1016/j.ins.2019.12.004
10.1007/s10479-019-03505-7
10.1007/s10107-013-0701-9
10.1007/s13675-015-0048-5
10.1109/TSP.2016.2614491
10.1007/BF01908075
10.1109/ACCESS.2020.2988796
10.1007/s10479-015-1980-8
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
COPYRIGHT 2024 Springer
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
– notice: COPYRIGHT 2024 Springer
DBID AAYXX
CITATION
DOI 10.1007/s10479-022-04642-2
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Business
EISSN 1572-9338
EndPage 1497
ExternalDocumentID A808231212
10_1007_s10479_022_04642_2
GeographicLocations Iran
GeographicLocations_xml – name: Iran
GrantInformation_xml – fundername: Sharif University of Technology
  grantid: 900439-211400
  funderid: http://dx.doi.org/10.13039/501100002398
GroupedDBID -4X
-57
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
7WY
88I
8AO
8FE
8FG
8FL
8TC
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYQZM
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBO
EBS
EBU
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IEA
IHE
IJ-
IKXTQ
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M2P
M4Y
M7S
MA-
N2Q
N95
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9M
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZD
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBE
SCF
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
Z8N
Z8U
Z92
ZL0
ZMTXR
ZYFGU
~8M
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
ICD
PHGZM
PHGZT
PQGLB
ID FETCH-LOGICAL-c358t-47eb5ecde18ce430d105e32c34f02562f231627de650676b8dbe1cb9b0f7adc93
IEDL.DBID RSV
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000770183300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0254-5330
IngestDate Sat Nov 29 13:48:03 EST 2025
Sat Nov 29 10:29:59 EST 2025
Tue Nov 18 22:24:32 EST 2025
Sat Nov 29 02:36:46 EST 2025
Fri Feb 21 02:38:06 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Isoperimetry problem
Clustering
Optimization problem with orthogonality constraints
Orthogonal Nonnegative Matrix Factorization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-47eb5ecde18ce430d105e32c34f02562f231627de650676b8dbe1cb9b0f7adc93
ORCID 0000-0002-2763-4279
PageCount 17
ParticipantIDs gale_infotracmisc_A808231212
gale_infotracacademiconefile_A808231212
crossref_citationtrail_10_1007_s10479_022_04642_2
crossref_primary_10_1007_s10479_022_04642_2
springer_journals_10_1007_s10479_022_04642_2
PublicationCentury 2000
PublicationDate 20240800
2024-08-00
20240801
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 8
  year: 2024
  text: 20240800
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Annals of operations research
PublicationTitleAbbrev Ann Oper Res
PublicationYear 2024
Publisher Springer US
Springer
Publisher_xml – name: Springer US
– name: Springer
References BolteJSabachSTeboulleMProximal alternating linearized minimization for non-convex and non-smooth problemsMath Program201414645949410.1007/s10107-013-0701-9
Dehghanpour-Sahron, J., & Mahdavi-Amiri, N. (2020) A competitive optimization approach for data clustering and orthogonal non-negative matrix factorization. 4OR, 27 pages, , https://doi.org/10.1007/s10288-020-00445-y.
TosyaliAKimJChoiJNew node anomaly detection algorithm based on nonnegative matrix factorization for directed citation networksAnn Oper Res202028845747410.1007/s10479-019-03508-4
YangBFuXSidiropoulosNDLearning from hidden traits: Joint factor analysis and latent clusteringIEEE Transactions on Signal Processing201765125626910.1109/TSP.2016.2614491
http://cs.joensuu.fi/sipu/datasets/.
Dolan E D, & Moré J J (2002). Benchmarking optimization software with performance profiles. Mathematical Programming,91(2), 201–213.
Peng, S., Ser, W., Chen, B., & Lin, Z. (2020). Robust orthogonal nonnegative matrix tri-factorization for data representation. Knowledge-Based Systems,201, 106054.
FardMMThonetTGaussierEDeep k-means: Jointly clustering with k-means and learning representationsPattern Recognition Letters202013818519210.1016/j.patrec.2020.07.028
PanJNgMKOrthogonal nonnegative matrix factorization by sparsity and nuclear norm optimizationSIAM Journal on Matrix Analysis and Applications201839285687510.1137/16M1107863
Del Buono N. (2009). A penalty function for computing orthogonal non-negative matrix factorizations. (pp. 1001–1005)
Facchinei, F., & Pang, J. S. (2007). Finite-dimensional variational inequalities and complementarity problems. Springer Science and Business Media.
KimuraKKudoMTanakaYA column-wise update algorithm for nonnegative matrix factorization in Bregman divergence with an orthogonal constraintMachine learning2016103228530610.1007/s10994-016-5553-0
HuangSKangZXuZLiuQRobust deep k-means: An effective and simple method for data clusteringPattern Recognition202111710799610.1016/j.patcog.2021.107996
LancichinettiAFortunatoSBenchmarks for testing community detection algorithms on directed and weighted graphs with overlapping communitiesPhysical Review E20098001611810.1103/PhysRevE.80.016118
Ding, C., Li, T., Peng, W., & Park, H. (2006). Orthogonal nonnegative matrix t-factorizations for clustering. (pp. 126–135)
ShefiRTeboulleMOn the rate of convergence of the proximal alternating linearized minimization algorithm for convex problemsEURO J Comput Optim20164274610.1007/s13675-015-0048-5
FräntiPSieranojaSK-means properties on six clustering benchmark datasetsApplied Intelligence201848124743475910.1007/s10489-018-1238-7
McQueenJSome methods for classification and analysis of multivariate observationsComputer and Chemistry19674257272
DinlerDTuralMKOzdemirelNECentroid based Tree-Structured Data Clustering Using Vertex/Edge Overlap and Graph Edit DistanceAnn Oper Res202028918512210.1007/s10479-019-03505-7
XiaSPengDMengDZhangCWangGGiemEChenZA fast adaptive k-means with no boundsIEEE Transactions on Pattern Analysis and Machine Intelligence202010.1109/TPAMI.2020.3008694
BertsekasDPNonlinear Programming19992Belmont, MassachusettsAthena Scientific
YuSSChuSWWangCMChanYKChangTCTwo improved k-means algorithmsApplied Soft Computing20186874775510.1016/j.asoc.2017.08.032
PaateroPTapperUPositive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data valuesEnvironmetrics19945211112610.1002/env.3170050203
Arthur, D., Sergi, V. (2007) K-means++: The Advantages of Careful Seeding. SODA ’ 07: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, 1027-1035 .
BankerRDChangHZhengZOn the use of super-efficiency procedures for ranking efficient units and identifying outliersAnn Oper Res20172501213510.1007/s10479-015-1980-8
KimJParkHFast non-negative matrix factorization: An active-set-like method and comparisonsSIAM Journal on Scientific Computing20113363261328110.1137/110821172
LawrenceHPhippsAComparing partitionsJournal of Classification19852119321810.1007/BF01908075
Ng, A. Y., Jordan, M. I., & Weiss, Y (2002) On spectral clustering: analysis and an algorithm. In: Advances in Neural Information Processing Systems, 849-856 .
DaneshgarAJavadiRRazaviSSClustering and outlier detection using isoperimetric number of treesPattern Recognition201346123371338210.1016/j.patcog.2013.05.015
SinagaKPYangMSUnsupervised K-means clustering algorithm. IEEEAccess20208807168072710.1109/ACCESS.2020.2988796
PengJWeiYApproximating k-means-type clustering via semidefinite programmingSIAM Journal on Optimization200718118620510.1137/050641983
HePXuXDingJFanBLow-rank nonnegative matrix factorization on Stiefel manifoldInformation Sciences202051413114810.1016/j.ins.2019.12.004
PompiliFGillisNAbsilPAGlineurFTwo algorithms for orthogonal non-negative matrix factorization with application to clusteringNeurocomputing2014141152510.1016/j.neucom.2014.02.018
QinZWanTZhaoHHybrid clustering of data and vague concepts based on labels semanticsAnn Oper Res2017256239341610.1007/s10479-017-2541-0
MorenoSPereiraJYushimitoWA hybrid K-means and integer programming method for commercial territory design: a case study in meat distributionAnn Oper Res202028618711710.1007/s10479-017-2742-6
http://www.vision.caltech.edu/lihi/Demos/SelfTuningClustering.html.
Bauckhage, C. K-means clustering is matrix factorization. arXiv preprint arXiv:1512.07548, (2015).
Pock, T., & SabachS. (2016). Inertial proximal alternating linearized minimization (iPALM) for nonconvex and nonsmooth problems. SIAM Journal on Imaging Sciences,9(4), 1756–1787.
Kimura, K., Tanaka, Y., & Kudo, M. (2015). A fast hierarchical alternating least squares algorithm for orthogonal nonnegative matrix factorization.
JiangBDaiYHA framework of constraint preserving update schemes for optimization on Stiefel manifoldMathematical Programming2015153253557510.1007/s10107-014-0816-7
LiWLiJLiuXDongLTwo fast vector-wise update algorithms for orthogonal nonnegative matrix factorization with sparsity constraintJournal of Computational and Applied Mathematics202037511278510.1016/j.cam.2020.112785
DuanLXuLLiuYCluster-based outlier detection. AnnOper Res200916815116810.1007/s10479-008-0371-9
B Yang (4642_CR39) 2017; 65
4642_CR27
S Moreno (4642_CR26) 2020; 286
DP Bertsekas (4642_CR4) 1999
P He (4642_CR16) 2020; 514
A Lancichinetti (4642_CR21) 2009; 80
4642_CR3
A Daneshgar (4642_CR6) 2013; 46
4642_CR1
K Kimura (4642_CR20) 2016; 103
P Paatero (4642_CR28) 1994; 5
J Pan (4642_CR29) 2018; 39
4642_CR42
4642_CR8
4642_CR9
J McQueen (4642_CR24) 1967; 4
4642_CR41
4642_CR7
D Dinler (4642_CR10) 2020; 289
4642_CR19
B Jiang (4642_CR17) 2015; 153
S Huang (4642_CR22) 2021; 117
MM Fard (4642_CR14) 2020; 138
J Bolte (4642_CR5) 2014; 146
4642_CR13
F Pompili (4642_CR33) 2014; 141
A Tosyali (4642_CR37) 2020; 288
R Shefi (4642_CR35) 2016; 4
SS Yu (4642_CR40) 2018; 68
J Peng (4642_CR30) 2007; 18
W Li (4642_CR25) 2020; 375
H Lawrence (4642_CR23) 1985; 2
KP Sinaga (4642_CR36) 2020; 8
J Kim (4642_CR18) 2011; 33
P Fränti (4642_CR15) 2018; 48
Z Qin (4642_CR34) 2017; 256
4642_CR11
L Duan (4642_CR12) 2009; 168
4642_CR31
S Xia (4642_CR38) 2020
4642_CR32
RD Banker (4642_CR2) 2017; 250
References_xml – reference: Ding, C., Li, T., Peng, W., & Park, H. (2006). Orthogonal nonnegative matrix t-factorizations for clustering. (pp. 126–135)
– reference: http://cs.joensuu.fi/sipu/datasets/.
– reference: QinZWanTZhaoHHybrid clustering of data and vague concepts based on labels semanticsAnn Oper Res2017256239341610.1007/s10479-017-2541-0
– reference: HuangSKangZXuZLiuQRobust deep k-means: An effective and simple method for data clusteringPattern Recognition202111710799610.1016/j.patcog.2021.107996
– reference: BankerRDChangHZhengZOn the use of super-efficiency procedures for ranking efficient units and identifying outliersAnn Oper Res20172501213510.1007/s10479-015-1980-8
– reference: ShefiRTeboulleMOn the rate of convergence of the proximal alternating linearized minimization algorithm for convex problemsEURO J Comput Optim20164274610.1007/s13675-015-0048-5
– reference: BertsekasDPNonlinear Programming19992Belmont, MassachusettsAthena Scientific
– reference: Dolan E D, & Moré J J (2002). Benchmarking optimization software with performance profiles. Mathematical Programming,91(2), 201–213.
– reference: McQueenJSome methods for classification and analysis of multivariate observationsComputer and Chemistry19674257272
– reference: BolteJSabachSTeboulleMProximal alternating linearized minimization for non-convex and non-smooth problemsMath Program201414645949410.1007/s10107-013-0701-9
– reference: Arthur, D., Sergi, V. (2007) K-means++: The Advantages of Careful Seeding. SODA ’ 07: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, 1027-1035 .
– reference: TosyaliAKimJChoiJNew node anomaly detection algorithm based on nonnegative matrix factorization for directed citation networksAnn Oper Res202028845747410.1007/s10479-019-03508-4
– reference: KimJParkHFast non-negative matrix factorization: An active-set-like method and comparisonsSIAM Journal on Scientific Computing20113363261328110.1137/110821172
– reference: FräntiPSieranojaSK-means properties on six clustering benchmark datasetsApplied Intelligence201848124743475910.1007/s10489-018-1238-7
– reference: YuSSChuSWWangCMChanYKChangTCTwo improved k-means algorithmsApplied Soft Computing20186874775510.1016/j.asoc.2017.08.032
– reference: FardMMThonetTGaussierEDeep k-means: Jointly clustering with k-means and learning representationsPattern Recognition Letters202013818519210.1016/j.patrec.2020.07.028
– reference: LiWLiJLiuXDongLTwo fast vector-wise update algorithms for orthogonal nonnegative matrix factorization with sparsity constraintJournal of Computational and Applied Mathematics202037511278510.1016/j.cam.2020.112785
– reference: DuanLXuLLiuYCluster-based outlier detection. AnnOper Res200916815116810.1007/s10479-008-0371-9
– reference: PompiliFGillisNAbsilPAGlineurFTwo algorithms for orthogonal non-negative matrix factorization with application to clusteringNeurocomputing2014141152510.1016/j.neucom.2014.02.018
– reference: XiaSPengDMengDZhangCWangGGiemEChenZA fast adaptive k-means with no boundsIEEE Transactions on Pattern Analysis and Machine Intelligence202010.1109/TPAMI.2020.3008694
– reference: http://www.vision.caltech.edu/lihi/Demos/SelfTuningClustering.html.
– reference: Dehghanpour-Sahron, J., & Mahdavi-Amiri, N. (2020) A competitive optimization approach for data clustering and orthogonal non-negative matrix factorization. 4OR, 27 pages, , https://doi.org/10.1007/s10288-020-00445-y.
– reference: PanJNgMKOrthogonal nonnegative matrix factorization by sparsity and nuclear norm optimizationSIAM Journal on Matrix Analysis and Applications201839285687510.1137/16M1107863
– reference: PaateroPTapperUPositive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data valuesEnvironmetrics19945211112610.1002/env.3170050203
– reference: Facchinei, F., & Pang, J. S. (2007). Finite-dimensional variational inequalities and complementarity problems. Springer Science and Business Media.
– reference: Kimura, K., Tanaka, Y., & Kudo, M. (2015). A fast hierarchical alternating least squares algorithm for orthogonal nonnegative matrix factorization.
– reference: MorenoSPereiraJYushimitoWA hybrid K-means and integer programming method for commercial territory design: a case study in meat distributionAnn Oper Res202028618711710.1007/s10479-017-2742-6
– reference: Ng, A. Y., Jordan, M. I., & Weiss, Y (2002) On spectral clustering: analysis and an algorithm. In: Advances in Neural Information Processing Systems, 849-856 .
– reference: DinlerDTuralMKOzdemirelNECentroid based Tree-Structured Data Clustering Using Vertex/Edge Overlap and Graph Edit DistanceAnn Oper Res202028918512210.1007/s10479-019-03505-7
– reference: JiangBDaiYHA framework of constraint preserving update schemes for optimization on Stiefel manifoldMathematical Programming2015153253557510.1007/s10107-014-0816-7
– reference: Del Buono N. (2009). A penalty function for computing orthogonal non-negative matrix factorizations. (pp. 1001–1005)
– reference: PengJWeiYApproximating k-means-type clustering via semidefinite programmingSIAM Journal on Optimization200718118620510.1137/050641983
– reference: Peng, S., Ser, W., Chen, B., & Lin, Z. (2020). Robust orthogonal nonnegative matrix tri-factorization for data representation. Knowledge-Based Systems,201, 106054.
– reference: HePXuXDingJFanBLow-rank nonnegative matrix factorization on Stiefel manifoldInformation Sciences202051413114810.1016/j.ins.2019.12.004
– reference: LancichinettiAFortunatoSBenchmarks for testing community detection algorithms on directed and weighted graphs with overlapping communitiesPhysical Review E20098001611810.1103/PhysRevE.80.016118
– reference: Bauckhage, C. K-means clustering is matrix factorization. arXiv preprint arXiv:1512.07548, (2015).
– reference: KimuraKKudoMTanakaYA column-wise update algorithm for nonnegative matrix factorization in Bregman divergence with an orthogonal constraintMachine learning2016103228530610.1007/s10994-016-5553-0
– reference: DaneshgarAJavadiRRazaviSSClustering and outlier detection using isoperimetric number of treesPattern Recognition201346123371338210.1016/j.patcog.2013.05.015
– reference: Pock, T., & SabachS. (2016). Inertial proximal alternating linearized minimization (iPALM) for nonconvex and nonsmooth problems. SIAM Journal on Imaging Sciences,9(4), 1756–1787.
– reference: SinagaKPYangMSUnsupervised K-means clustering algorithm. IEEEAccess20208807168072710.1109/ACCESS.2020.2988796
– reference: YangBFuXSidiropoulosNDLearning from hidden traits: Joint factor analysis and latent clusteringIEEE Transactions on Signal Processing201765125626910.1109/TSP.2016.2614491
– reference: LawrenceHPhippsAComparing partitionsJournal of Classification19852119321810.1007/BF01908075
– volume: 33
  start-page: 3261
  issue: 6
  year: 2011
  ident: 4642_CR18
  publication-title: SIAM Journal on Scientific Computing
  doi: 10.1137/110821172
– volume: 4
  start-page: 257
  year: 1967
  ident: 4642_CR24
  publication-title: Computer and Chemistry
– volume: 375
  start-page: 112785
  year: 2020
  ident: 4642_CR25
  publication-title: Journal of Computational and Applied Mathematics
  doi: 10.1016/j.cam.2020.112785
– volume: 288
  start-page: 457
  year: 2020
  ident: 4642_CR37
  publication-title: Ann Oper Res
  doi: 10.1007/s10479-019-03508-4
– ident: 4642_CR11
  doi: 10.1007/s101070100263
– volume: 153
  start-page: 535
  issue: 2
  year: 2015
  ident: 4642_CR17
  publication-title: Mathematical Programming
  doi: 10.1007/s10107-014-0816-7
– volume: 117
  start-page: 107996
  year: 2021
  ident: 4642_CR22
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2021.107996
– volume: 68
  start-page: 747
  year: 2018
  ident: 4642_CR40
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2017.08.032
– volume: 168
  start-page: 151
  year: 2009
  ident: 4642_CR12
  publication-title: Oper Res
  doi: 10.1007/s10479-008-0371-9
– ident: 4642_CR9
  doi: 10.1145/1150402.1150420
– ident: 4642_CR31
  doi: 10.1016/j.knosys.2020.106054
– year: 2020
  ident: 4642_CR38
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2020.3008694
– volume: 138
  start-page: 185
  year: 2020
  ident: 4642_CR14
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2020.07.028
– ident: 4642_CR19
– volume: 141
  start-page: 15
  year: 2014
  ident: 4642_CR33
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.02.018
– ident: 4642_CR3
– ident: 4642_CR1
– ident: 4642_CR41
– volume: 80
  start-page: 016118
  year: 2009
  ident: 4642_CR21
  publication-title: Physical Review E
  doi: 10.1103/PhysRevE.80.016118
– volume: 48
  start-page: 4743
  issue: 12
  year: 2018
  ident: 4642_CR15
  publication-title: Applied Intelligence
  doi: 10.1007/s10489-018-1238-7
– volume-title: Nonlinear Programming
  year: 1999
  ident: 4642_CR4
– volume: 39
  start-page: 856
  issue: 2
  year: 2018
  ident: 4642_CR29
  publication-title: SIAM Journal on Matrix Analysis and Applications
  doi: 10.1137/16M1107863
– volume: 18
  start-page: 186
  issue: 1
  year: 2007
  ident: 4642_CR30
  publication-title: SIAM Journal on Optimization
  doi: 10.1137/050641983
– volume: 256
  start-page: 393
  issue: 2
  year: 2017
  ident: 4642_CR34
  publication-title: Ann Oper Res
  doi: 10.1007/s10479-017-2541-0
– volume: 5
  start-page: 111
  issue: 2
  year: 1994
  ident: 4642_CR28
  publication-title: Environmetrics
  doi: 10.1002/env.3170050203
– ident: 4642_CR7
  doi: 10.1007/s10288-020-00445-y
– volume: 286
  start-page: 87
  issue: 1
  year: 2020
  ident: 4642_CR26
  publication-title: Ann Oper Res
  doi: 10.1007/s10479-017-2742-6
– ident: 4642_CR32
  doi: 10.1137/16M1064064
– ident: 4642_CR8
  doi: 10.1109/ISDA.2009.59
– volume: 103
  start-page: 285
  issue: 2
  year: 2016
  ident: 4642_CR20
  publication-title: Machine learning
  doi: 10.1007/s10994-016-5553-0
– volume: 46
  start-page: 3371
  issue: 12
  year: 2013
  ident: 4642_CR6
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2013.05.015
– ident: 4642_CR13
– volume: 514
  start-page: 131
  year: 2020
  ident: 4642_CR16
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2019.12.004
– volume: 289
  start-page: 85
  issue: 1
  year: 2020
  ident: 4642_CR10
  publication-title: Ann Oper Res
  doi: 10.1007/s10479-019-03505-7
– volume: 146
  start-page: 459
  year: 2014
  ident: 4642_CR5
  publication-title: Math Program
  doi: 10.1007/s10107-013-0701-9
– volume: 4
  start-page: 27
  year: 2016
  ident: 4642_CR35
  publication-title: EURO J Comput Optim
  doi: 10.1007/s13675-015-0048-5
– volume: 65
  start-page: 256
  issue: 1
  year: 2017
  ident: 4642_CR39
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2016.2614491
– volume: 2
  start-page: 193
  issue: 1
  year: 1985
  ident: 4642_CR23
  publication-title: Journal of Classification
  doi: 10.1007/BF01908075
– ident: 4642_CR42
– ident: 4642_CR27
– volume: 8
  start-page: 80716
  year: 2020
  ident: 4642_CR36
  publication-title: Access
  doi: 10.1109/ACCESS.2020.2988796
– volume: 250
  start-page: 21
  issue: 1
  year: 2017
  ident: 4642_CR2
  publication-title: Ann Oper Res
  doi: 10.1007/s10479-015-1980-8
SSID ssj0001185
Score 2.434457
Snippet Orthogonal Nonnegative Matrix Factorization (ONMF) with orthogonality constraints on a matrix has been found to provide better clustering results over existing...
SourceID gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1481
SubjectTerms Algorithms
Business and Management
Clustering (Computers)
Combinatorics
Data mining
Mathematical optimization
Operations Research/Decision Theory
Original Research
Theory of Computation
Title Orthogonal nonnegative matrix factorization problems for clustering: A new formulation and a competitive algorithm
URI https://link.springer.com/article/10.1007/s10479-022-04642-2
Volume 339
WOSCitedRecordID wos000770183300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink Contemporary Journals
  customDbUrl:
  eissn: 1572-9338
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001185
  issn: 0254-5330
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB1VtEJwKGUBsUArH5A4gKV8OBuH26oq6olWfGlvUTy2F6TdBW2yVX8-Y8cBVqpWKtfEmTiOPX7WvJkHcGzQSp1jxnNlFRdVZrkqsoxHqrBpptNBIbUXm8gvL-VoVPwOSWF1x3bvQpLeU79JdhN5wR373IXjEk6O9yNtd9IJNlxd3734X4LMnrhIRx_uuJMhVebfNpa2o84pL4dE_U5zsfW-Pn6BzwFZsmE7Fbbhg5n1YL0jtvdgqxNwYGE992DzTTXCHZj_mjf3j2MHzdnM8V_Gvig4m7oq_n9Zq8wT0jZZEKKpGYFehpOFq7dAVs7ZkBFQd1enQRiMVTPNKoYeoHumEqsmY7LU3E934fbix833nzxIMnBMM9lwkRuVGdQmlmhEGmmCZyZNMBXWgafEElwcJLk2BPwG-UBJrUyMqlCRzSuNRboHa_QFZh8YHYWMjkWlIlMILbFCa1GqKosERrEVfYi7P1NiqFfuZDMm5WulZTfaJY126Ue7TPpw-vLMU1utY2XrE_fDS7eUyTL1oM1IoP65oljlULowZEybex-OllrSEsSl22fddCiDC6hXvPfg_5ofwkZCSKplHR7BWjNfmK_wCf80D_X8m5_7z4V3_zw
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fTxQxEJ4YNKAPggfEQ5Q-mPAgTfZH97br28VIMMJhBAxvzXbaHiR3p7lbjH8-024XucSQyOtud7bb7sx8zcx8A_DeopOmxIKX2mku6sJxXRUFT3Tl8sLkg0qa0GyiHI3k5WX1LRaFLbps9y4kGSz1vWI3UVbcZ5_7cFzGyfA-FeSxPGP-97Mfd_aXIHNIXKSjD_e5k7FU5t8yltxRZ5SXQ6LB0xyuP26OG_AyIks2bH-FV_DEznqw2iW292C9a-DAoj734MU9NsJNmJ_Om6ufYw_N2cznv4wDKTibehb_P6ztzBPLNllsRLNgBHoZTm483wJJ-ciGjIC6vzqNjcFYPTOsZhgAeshUYvVkTJKaq-kWXBx-Pv90xGNLBo55IRsuSqsLi8amEq3IE0PwzOYZ5sJ58JQ5gouDrDSWgN-gHGhptE1RVzpxZW2wyrdhhb7AvgZGRyFrUlHrxFbCSKzROZS6LhKBSepEH9JuZxRGvnLfNmOi_jIt-9VWtNoqrLbK-vDh7plfLVvHg6P3_YYrr8okmWbQViTQ_DwplhpKH4ZMybn3YXdpJKkgLt0-6H4HFU3A4oH37vzf8D1YOzo_OVbHX0Zf38DzjFBVm4G4CyvN_Ma-hWf4u7lezN8FPbgFgrwCLw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED9KV8r2sLbZyrK1nR4Ge9hE_SHH8t5C29CxkRb2Qd-E9ZUOkqwk7tifvztZ7hIYhdFXWz7Lkk_6ifvd7wDeOOOlLU3BS-01F3Xhua6Kgie68nlh80ElbSg2UY7H8uqqulzJ4g9s9y4k2eY0kErTvDm-sf54JfFNlBUnJjqF5jKOi_AjQUR6Oq9_-X63FiN8DiRGPAZx4lHGtJl_21jbmroFej08Gnad0c7D-7sLTyPiZMP2F9mDDTfvwXZHeO_BTlfYgUU_78GTFZXCZ7C4WDTXPycE2dmceDGTIBbOZqTu_5u1FXtiOieLBWqWDMEwM9Nb0mFAKx_YkCGAp6uzWDCM1XPLamYCcA8MJlZPJ2ipuZ49h2-js68n5zyWauAmL2TDRel04Yx1qTRO5IlF2ObyzOTCE6jKPMLIQVZah4BwUA60tNqlRlc68WVtTZXvwyZ-gXsBDI9Izqai1omrhJWmNt4bqesiESZJvehD2s2SMlHHnMppTNVfBWYabYWjrcJoq6wP7-6euWlVPO5t_ZYmX5GLo2XsQZupgP0jsSw1lBSeTHHT78PBWkt0TbN2-333a6i4NCzvee_L_2v-GrYvT0fq88fxp1fwOEOw1RITD2CzWdy6Q9gyv5ofy8VRcIk_VrQLEw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Orthogonal+nonnegative+matrix+factorization+problems+for+clustering%3A+A+new+formulation+and+a+competitive+algorithm&rft.jtitle=Annals+of+operations+research&rft.au=Dehghanpour%2C+Ja%E2%80%99far&rft.au=Mahdavi-Amiri%2C+Nezam&rft.date=2024-08-01&rft.issn=0254-5330&rft.eissn=1572-9338&rft.volume=339&rft.issue=3&rft.spage=1481&rft.epage=1497&rft_id=info:doi/10.1007%2Fs10479-022-04642-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10479_022_04642_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0254-5330&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0254-5330&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0254-5330&client=summon