An R -linearly convergent derivative-free algorithm for nonlinear complementarity problems based on the generalized Fischer–Burmeister merit function

In the paper [J.-S. Chen, S. Pan, A family of NCP-functions and a descent method for the nonlinear complementarity problem, Computational Optimization and Applications, 40 (2008) 389–404], the authors proposed a derivative-free descent algorithm for nonlinear complementarity problems (NCPs) by the g...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of computational and applied mathematics Ročník 232; číslo 2; s. 455 - 471
Hlavní autori: Chen, Jein-Shan, Gao, Hung-Ta, Pan, Shaohua
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Kidlington Elsevier B.V 15.10.2009
Elsevier
Predmet:
ISSN:0377-0427, 1879-1778
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In the paper [J.-S. Chen, S. Pan, A family of NCP-functions and a descent method for the nonlinear complementarity problem, Computational Optimization and Applications, 40 (2008) 389–404], the authors proposed a derivative-free descent algorithm for nonlinear complementarity problems (NCPs) by the generalized Fischer–Burmeister merit function: ψ p ( a , b ) = 1 2 [ ‖ ( a , b ) ‖ p − ( a + b ) ] 2 , and observed that the choice of the parameter p has a great influence on the numerical performance of the algorithm. In this paper, we analyze the phenomenon theoretically for a derivative-free descent algorithm which is based on a penalized form of ψ p and uses a different direction from that of Chen and Pan. More specifically, we show that the algorithm proposed is globally convergent and has a locally R -linear convergence rate, and furthermore, its convergence rate will become worse when the parameter p decreases. Numerical results are also reported for the test problems from MCPLIB, which further verify the theoretical results obtained.
Bibliografia:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0377-0427
1879-1778
DOI:10.1016/j.cam.2009.06.022