Ensemble of physics-informed neural networks for solving plane elasticity problems with examples
Two-dimensional (plane) elasticity equations in solid mechanics are solved numerically with the use of an ensemble of physics-informed neural networks (PINNs). The system of equations consists of the kinematic definitions, i.e. the strain–displacement relations, the equilibrium equations connecting...
Saved in:
| Published in: | Acta mechanica Vol. 235; no. 11; pp. 6703 - 6722 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Vienna
Springer Vienna
01.11.2024
Springer Springer Nature B.V |
| Subjects: | |
| ISSN: | 0001-5970, 1619-6937 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Two-dimensional (plane) elasticity equations in solid mechanics are solved numerically with the use of an ensemble of physics-informed neural networks (PINNs). The system of equations consists of the kinematic definitions, i.e. the strain–displacement relations, the equilibrium equations connecting a stress tensor with external loading forces and the isotropic constitutive relations for stress and strain tensors. Different boundary conditions for the strain tensor and displacements are considered. The proposed computational approach is based on principles of artificial intelligence and uses a developed open-source machine learning platform, scientific software Tensorflow, written in Python and Keras library, an application programming interface, intended for a deep learning. A deep learning is performed through training the physics-informed neural network model in order to fit the plain elasticity equations and given boundary conditions at collocation points. The numerical technique is tested on an example, where the exact solution is given. Two examples with plane stress problems are calculated with the proposed multi-PINN model. The numerical solution is compared with results obtained after using commercial finite element software. The numerical results have shown that an application of a multi-network approach is more beneficial in comparison with using a single PINN with many outputs. The derived results confirmed the efficiency of the introduced methodology. The proposed technique can be extended and applied to the structures with nonlinear material properties. |
|---|---|
| AbstractList | Two-dimensional (plane) elasticity equations in solid mechanics are solved numerically with the use of an ensemble of physics-informed neural networks (PINNs). The system of equations consists of the kinematic definitions, i.e. the strain–displacement relations, the equilibrium equations connecting a stress tensor with external loading forces and the isotropic constitutive relations for stress and strain tensors. Different boundary conditions for the strain tensor and displacements are considered. The proposed computational approach is based on principles of artificial intelligence and uses a developed open-source machine learning platform, scientific software Tensorflow, written in Python and Keras library, an application programming interface, intended for a deep learning. A deep learning is performed through training the physics-informed neural network model in order to fit the plain elasticity equations and given boundary conditions at collocation points. The numerical technique is tested on an example, where the exact solution is given. Two examples with plane stress problems are calculated with the proposed multi-PINN model. The numerical solution is compared with results obtained after using commercial finite element software. The numerical results have shown that an application of a multi-network approach is more beneficial in comparison with using a single PINN with many outputs. The derived results confirmed the efficiency of the introduced methodology. The proposed technique can be extended and applied to the structures with nonlinear material properties. |
| Audience | Academic |
| Author | Drosopoulos, Georgios A. Stavroulakis, Georgios E. Mouratidou, Aliki D. |
| Author_xml | – sequence: 1 givenname: Aliki D. orcidid: 0000-0002-8382-1263 surname: Mouratidou fullname: Mouratidou, Aliki D. email: amouratidou@tuc.gr organization: School of Production Engineering and Management, Institute of Computational Mechanics and Optimization, Technical University of Crete – sequence: 2 givenname: Georgios A. surname: Drosopoulos fullname: Drosopoulos, Georgios A. organization: Discipline of Civil Engineering, School of Engineering and Computing, University of Central Lancashire, Discipline of Civil Engineering, School of Engineering, University of KwaZulu-Natal – sequence: 3 givenname: Georgios E. surname: Stavroulakis fullname: Stavroulakis, Georgios E. organization: School of Production Engineering and Management, Institute of Computational Mechanics and Optimization, Technical University of Crete |
| BookMark | eNp9kE1rHDEMhk1JoZu0f6AnQ89O7fF8-RhC2hQCveTuemx549RjT-3Zpvvvo-0UCjkEg4WEnlfSe07OUk5AyEfBLwXnw-eKHx8Yb1rGW95JJt-QneiFYr2SwxnZcc4F69TA35HzWh8xa4ZW7MiPm1RhniLQ7OnycKzBVhaSz2UGRxMciokY1qdcflaKZVpz_B3Sni7RJKAQTV2DDeuRLiWjzlzpU1gfKPwx8xKhvidvvYkVPvyLF-T-y8399S27-_712_XVHbOyG1cmXTOBkh04paRrnZFCuNFzr4YeU_DSTr3x3o2iH2QzqVENU9cqOXknrZUX5NMmi1v8OkBd9WM-lIQTNSo1fddyLrHrcuvamwj6dOZajMXnYA4WLfUB61ejEEJ2clQIjBtgS661gNd4qllDTgiGqAXXJ__15r9G__Vf__VpVvMCXUqYTTm-DskNqtic9lD-n_EK9Qy4Dpvm |
| CitedBy_id | crossref_primary_10_7235_HORT_20250041 crossref_primary_10_1016_j_ijmecsci_2025_110232 crossref_primary_10_3390_app15073697 crossref_primary_10_1103_PhysRevE_111_L023302 crossref_primary_10_3390_modelling5040080 |
| Cites_doi | 10.1109/72.712178 10.4208/cicp.OA-2020-0193 10.1016/S0143-974X(97)00039-4 10.15377/2409-5761.2022.09.8 10.1038/s42256-021-00302-5 10.1038/s42254-021-00314-5 10.1016/0895-7177(94)90095-7 10.1007/978-3-030-66111-3 10.1371/journal.pone.0232683 10.48550/arXiv.2010.09088 10.1007/s00707-023-03691-3 10.1016/j.jmps.2022.105177 10.1002/nme.7388 10.1002/nme.1620361310 10.1007/BF01589116 10.1364/OE.384875 10.1007/BF01212634 10.1016/B0-08-043749-4/03117-7 10.1007/s10409-023-22438-x 10.1016/j.cnsns.2005.09.001 10.1016/j.jcp.2018.10.045 10.1007/s00707-023-03676-2 10.1016/j.camwa.2008.01.028 10.48550/arXiv.2211.07377 10.1016/j.cma.2022.115616 10.1016/j.cma.2020.113552 10.1201/9781003017240 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. COPYRIGHT 2024 Springer |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: COPYRIGHT 2024 Springer |
| DBID | AAYXX CITATION 3V. 7TB 7XB 88I 8AO 8FD 8FE 8FG 8FK 8G5 ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ GUQSH HCIFZ KR7 L6V M2O M2P M7S MBDVC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U S0W |
| DOI | 10.1007/s00707-024-04053-3 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Local Electronic Collection Information ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student Research Library Prep SciTech Premium Collection Civil Engineering Abstracts ProQuest Engineering Collection Research Library Science Database Engineering Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DELNET Engineering & Technology Collection |
| DatabaseTitle | CrossRef Research Library Prep ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Research Library Prep |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1619-6937 |
| EndPage | 6722 |
| ExternalDocumentID | A811135389 10_1007_s00707_024_04053_3 |
| GroupedDBID | --Z -5B -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 23M 28- 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 88I 8AO 8FE 8FG 8G5 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDPE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EAD EAP EBLON EBS EIOEI EJD EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAO IHE IJ- IKXTQ ITC ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L6V LAS LLZTM M2O M2P M4Y M7S MA- MK~ ML~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9P PF- PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S0W S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 T9H TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WK8 Y6R YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8R Z8S Z8T Z8W Z92 _50 ~02 ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7TB 7XB 8FD 8FK FR3 KR7 MBDVC PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c358t-3d2be935ed993d4da311d8f0f976d4def3cb6affd816732b9897b5493bfd3cc3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001302293800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0001-5970 |
| IngestDate | Wed Nov 05 14:47:16 EST 2025 Sat Nov 29 10:28:28 EST 2025 Sat Nov 29 05:43:00 EST 2025 Tue Nov 18 20:54:59 EST 2025 Fri Feb 21 02:40:37 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c358t-3d2be935ed993d4da311d8f0f976d4def3cb6affd816732b9897b5493bfd3cc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-8382-1263 |
| PQID | 3112654003 |
| PQPubID | 47448 |
| PageCount | 20 |
| ParticipantIDs | proquest_journals_3112654003 gale_infotracacademiconefile_A811135389 crossref_citationtrail_10_1007_s00707_024_04053_3 crossref_primary_10_1007_s00707_024_04053_3 springer_journals_10_1007_s00707_024_04053_3 |
| PublicationCentury | 2000 |
| PublicationDate | 20241100 2024-11-00 20241101 |
| PublicationDateYYYYMMDD | 2024-11-01 |
| PublicationDate_xml | – month: 11 year: 2024 text: 20241100 |
| PublicationDecade | 2020 |
| PublicationPlace | Vienna |
| PublicationPlace_xml | – name: Vienna – name: Wien |
| PublicationTitle | Acta mechanica |
| PublicationTitleAbbrev | Acta Mech |
| PublicationYear | 2024 |
| Publisher | Springer Vienna Springer Springer Nature B.V |
| Publisher_xml | – name: Springer Vienna – name: Springer – name: Springer Nature B.V |
| References | FletcherRPractical methods of optimization19872New YorkJohn Wiley & Sons KatsikisDMuradovaADStavroulakisGSA gentle introduction to physics-informed neural networks, with applications in static rod and beam problemsJr. Adv. Appl. & Comput. Math.2022910312810.15377/2409-5761.2022.09.8 Stavroulakis, G., Bolzon, G., Waszczyszyn, Z., Ziemianski, L.: Inverse analysis. In: Karihaloo, B., Ritchie, R.O., Milne, I. (eds) Comprehensive structural integrity, numerical and computational methods, vol. 3, Chap 13, pp. 685–718. Elsevier, Amsterdam (2003) FaroughiSDarvishiARezaeiSOn the order of derivation in the training of physics-informed neural networks: case studies for non-uniform beam structuresActa Mech.20232345673569510.1007/s00707-023-03676-2 LiuDCNocedalJOn the limited memory BFGS method for large scale optimizationMath. Program.198945503528103824510.1007/BF01589116 HaghighatEJuanesRSciann: a keras/tensorflow wrapper for scientific computations and physics-informed deep learning using artificial neural networksComp. Meth. Appl. Mech. Eng.2021373417898110.1016/j.cma.2020.113552 Haghighat, E., Raissi, M., Moure, A., Gomez, H., and Juanes, R.: A deep learning framework for solution and discovery in solid mechanics. https://arxiv.org/abs/2003.02751 (2020) Ruder, S.: An overview of gradient descent optimization algorithms (2017) https://arxiv.org/abs/1609.04747 ChenYLuLKarniadakisGEDal NegroLPhysics-informed neural networks for inverse problems in nano-optics and metamaterialsOpt. Express2020288116181163310.1364/OE.384875 BaydinAPearlmutterBARadulAASiskindJMAutomatic differentiation in machine learning: a surveyJ. Mach. Learn. Res.20181813800512 Güne, A., Baydin, G., Pearlmutter, B.A., Siskind, J.M.: Automatic differentiation in machine learning: a survey, J. Mach. Learn. Res. 18, 1-43, (2018) URL http://www.jmlr.org/papers/volume18/17-468/17-468.pdf MeadeAJFernandezAAThe numerical solution of linear ordinary differential equations by feed-forward neural networksMath. Comput. Model.19941912510.1016/0895-7177(94)90095-7 KovachkiNLanthalerSMishraSOn universal approximation and error bounds for Fourier neural operatorJ. Mach. Learn. Res.2021221764353069 Muradova, A.D, Stavroulakis, G.E.: Physics-informed Neural Networks for the solution of unilateral contact problems. In: Book of Proceedings, 13th International Congress on Mechanics HSTAM, pp. 451-459. (2022). https://hstam2022.eap.gr/book-of-proceedings Chollet, F.: Deep learning with python, Manning Publications Company, URL https://books.google.ca/books?id= Yo3CAQAACAAJ (2017) ChadhaCHeJAbueiddaDKoricSGuleryuzEJasiukIImproving the accuracy of the deep energy methodActa Mech.202323459755998466984810.1007/s00707-023-03691-3 ShinYDarbonJKarniadakisGEOn the convergence of physics informed neural networks for linear second-order elliptic and parabolic type PDEsCommun. Comput. Phys.20202820422074418852910.4208/cicp.OA-2020-0193 Waszczyszyn, Z., Ziemiański, L.: Neural networks in the identification analysis of structural mechanics problems. In: Mróz, Z., Stavroulakis, G.E. (eds.) Parameter identification of materials and structures, CISM International Centre for Mechanical Sciences (Courses and Lectures), p. 469. Springer, Vienna (2005) LuLJinPPangGZhangZKarniadakisGELearning nonlinear operators via DeepONet based on the universal approximation theorem of operatorsNat. Mach. Intell.2021321822910.1038/s42256-021-00302-5 RezaeiSHarandiAMoeineddinAXuB-XReeseSA mixed formulation for physics-informed neural networks as a potential solver for engineering problems in heterogeneous domains: comparison with finite element methodComput. Meth. Appl. Mech. Eng.2022401Part B448480410.1016/j.cma.2022.115616 Tartakovsky, A. M., Marrero, C. O., Perdikaris, P., Tartakovsky, G. D., and Barajas- Solano D.: Learning parameters and constitutive relationships with physics informed deep neural networks. arXiv preprint arXiv:1808.03398 (2018) KortesisSPanagiotopoulosPDNeural networks for computing in structural analysis: methods and prospects of applicationsInt. Jr. Numeric. Meth. Eng.1993362305231810.1002/nme.1620361310 TheocarisPSPanagiotopoulosPDPlasticity including the Bauschinger effect, studied by a neural network approachActa Mech.19951136375136169710.1007/BF01212634 LagarisELikasAFotiadisDIArtificial neural networks for solving ordinary and partial differential equationsIEEE Trans. Neural Netw.19989987100010.1109/72.712178 RaissiMPerdikarisPKarniadakisGEPhysics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equationsJ. Comput. Phys.2019378686707388169510.1016/j.jcp.2018.10.045 Drosopoulos, G.A., Stavroulakis, G.E.: Non-linear mechanics for composite. In: Heterogeneous Structures, CRC Press, Taylor and Francis (2022) Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization, computer science, mathematics. In: The International Conference on Learning Representations (ICLR) (2015) DrosopoulosGAStavroulakisGEData-driven computational homogenization using neural networks: FE2-NN application on damaged masonryACM J. Comput. Cult. Herit.202014119 KadeethumTJorgensenTNickHPhysics-informed neural networks for solving nonlinear diffusivity and Biot’s equationsPLoS ONE20201510.1371/journal.pone.0232683 MuradovaADStavroulakisGEThe projective-iterative method and neural network estimation for buckling of elastic plates in nonlinear theoryCommun. Nonlin. Sci. Num. Sim.20071210681088230977410.1016/j.cnsns.2005.09.001 StavroulakisGEInverse and crack identification problems in engineering mechanics2000New YorkSpringer Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D.G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., Zheng, X.: Tensorflow: a system for large-scale machine learning. In: 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), USENIX Association, Savannah, GA, pp. 265-283. URL https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi. (2016) HarandiAMoeineddinAKaliskeMReeseSRezaeiSMixed formulation of physics-informed neural networks for thermo-mechanically coupled systems and heterogeneous domainsInt J Numer. Methods Eng.2024125469355010.1002/nme.7388 FaroughiSAPawarNFernandesCRaissiMDasSKalantariNKMahjourSKPhysics-guided, physics-informed, and physics-encoded neural networksSci. Comput.202310.48550/arXiv.2211.07377 NiuSZhangEBazilevsYSrivastavaVModeling finite-strain plasticity using physics-informed neural network and assessment of the network performanceJ. Mech. Phys. Solids2023172452654610.1016/j.jmps.2022.105177 KarniadakisGEKevrekidisIGLuLPhysics-informed machine learning.Nat. Rev. Phys.2021342244010.1038/s42254-021-00314-5 StavroulakisGEAvdelasAAbdallaKMPanagiotopoulosPDA neural network approach to the modelling, calculation and identification of semi-rigid connections in steel structuresJ. Construct. Steel Res.1997449110510.1016/S0143-974X(97)00039-4 YagawaGOishiAComputational mechanics with neural networks2021New YorkSpringer10.1007/978-3-030-66111-3 MuradovaADStavroulakisGEPhysics-informed neural networks for elastic plate problems with bending and Winkler-type contact effectsJ. Serb. Soc. Comput. Mech.2021154554 BazmaraMMianroodiMSilaniMApplication of physics-informed neural networks for nonlinear buckling analysis of beamsActa. Mech. Sin.202339463774310.1007/s10409-023-22438-x Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart, A., Anandkumar, A.: Fourier neural operator for parametric partial differential equations, arXiv preprint arXiv:2010.08895 (2020) XiaoYWeiZWangZA limited memory BFGS-type method for large-scale unconstrained optimizationComput. Math. Appl.20085610011009243787210.1016/j.camwa.2008.01.028 GuoMHaghighatEAn energy-based error bound of physics-informed neural network solutions in elasticityJ. Eng. Mech.202010.48550/arXiv.2010.09088 CaiSMaoZWangZYinMKarniadakisGEPhysics-informed neural networks (PINNs) for fluid mechanics: a reviewActa Mech. Sin.2022371124412280 G Yagawa (4053_CR44) 2021 S Rezaei (4053_CR34) 2022; 401 N Kovachki (4053_CR23) 2021; 22 GE Stavroulakis (4053_CR38) 1997; 44 GA Drosopoulos (4053_CR9) 2020; 14 AJ Meade (4053_CR28) 1994; 19 4053_CR7 E Haghighat (4053_CR15) 2021; 373 Y Xiao (4053_CR43) 2008; 56 M Bazmara (4053_CR3) 2023; 39 4053_CR8 AD Muradova (4053_CR29) 2021; 15 S Niu (4053_CR32) 2023; 172 4053_CR42 C Chadha (4053_CR5) 2023; 234 4053_CR21 A Baydin (4053_CR2) 2018; 18 Y Chen (4053_CR6) 2020; 28 4053_CR40 S Kortesis (4053_CR22) 1993; 36 M Raissi (4053_CR33) 2019; 378 4053_CR25 GE Stavroulakis (4053_CR37) 2000 GE Karniadakis (4053_CR19) 2021; 3 S Faroughi (4053_CR10) 2023; 234 R Fletcher (4053_CR12) 1987 SA Faroughi (4053_CR11) 2023 T Kadeethum (4053_CR18) 2020; 15 M Guo (4053_CR14) 2020 Y Shin (4053_CR36) 2020; 28 DC Liu (4053_CR26) 1989; 45 4053_CR1 A Harandi (4053_CR17) 2024; 125 L Lu (4053_CR27) 2021; 3 4053_CR39 S Cai (4053_CR4) 2022; 37 4053_CR16 AD Muradova (4053_CR31) 2007; 12 D Katsikis (4053_CR20) 2022; 9 PS Theocaris (4053_CR41) 1995; 113 E Lagaris (4053_CR24) 1998; 9 4053_CR30 4053_CR13 4053_CR35 |
| References_xml | – reference: DrosopoulosGAStavroulakisGEData-driven computational homogenization using neural networks: FE2-NN application on damaged masonryACM J. Comput. Cult. Herit.202014119 – reference: LuLJinPPangGZhangZKarniadakisGELearning nonlinear operators via DeepONet based on the universal approximation theorem of operatorsNat. Mach. Intell.2021321822910.1038/s42256-021-00302-5 – reference: Muradova, A.D, Stavroulakis, G.E.: Physics-informed Neural Networks for the solution of unilateral contact problems. In: Book of Proceedings, 13th International Congress on Mechanics HSTAM, pp. 451-459. (2022). https://hstam2022.eap.gr/book-of-proceedings/ – reference: Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization, computer science, mathematics. In: The International Conference on Learning Representations (ICLR) (2015) – reference: Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D.G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., Zheng, X.: Tensorflow: a system for large-scale machine learning. In: 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), USENIX Association, Savannah, GA, pp. 265-283. URL https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi. (2016) – reference: HaghighatEJuanesRSciann: a keras/tensorflow wrapper for scientific computations and physics-informed deep learning using artificial neural networksComp. Meth. Appl. Mech. Eng.2021373417898110.1016/j.cma.2020.113552 – reference: MeadeAJFernandezAAThe numerical solution of linear ordinary differential equations by feed-forward neural networksMath. Comput. Model.19941912510.1016/0895-7177(94)90095-7 – reference: RezaeiSHarandiAMoeineddinAXuB-XReeseSA mixed formulation for physics-informed neural networks as a potential solver for engineering problems in heterogeneous domains: comparison with finite element methodComput. Meth. Appl. Mech. Eng.2022401Part B448480410.1016/j.cma.2022.115616 – reference: TheocarisPSPanagiotopoulosPDPlasticity including the Bauschinger effect, studied by a neural network approachActa Mech.19951136375136169710.1007/BF01212634 – reference: Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart, A., Anandkumar, A.: Fourier neural operator for parametric partial differential equations, arXiv preprint arXiv:2010.08895 (2020) – reference: RaissiMPerdikarisPKarniadakisGEPhysics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equationsJ. Comput. Phys.2019378686707388169510.1016/j.jcp.2018.10.045 – reference: YagawaGOishiAComputational mechanics with neural networks2021New YorkSpringer10.1007/978-3-030-66111-3 – reference: Drosopoulos, G.A., Stavroulakis, G.E.: Non-linear mechanics for composite. In: Heterogeneous Structures, CRC Press, Taylor and Francis (2022) – reference: FletcherRPractical methods of optimization19872New YorkJohn Wiley & Sons – reference: XiaoYWeiZWangZA limited memory BFGS-type method for large-scale unconstrained optimizationComput. Math. Appl.20085610011009243787210.1016/j.camwa.2008.01.028 – reference: GuoMHaghighatEAn energy-based error bound of physics-informed neural network solutions in elasticityJ. Eng. Mech.202010.48550/arXiv.2010.09088 – reference: ChadhaCHeJAbueiddaDKoricSGuleryuzEJasiukIImproving the accuracy of the deep energy methodActa Mech.202323459755998466984810.1007/s00707-023-03691-3 – reference: HarandiAMoeineddinAKaliskeMReeseSRezaeiSMixed formulation of physics-informed neural networks for thermo-mechanically coupled systems and heterogeneous domainsInt J Numer. Methods Eng.2024125469355010.1002/nme.7388 – reference: FaroughiSDarvishiARezaeiSOn the order of derivation in the training of physics-informed neural networks: case studies for non-uniform beam structuresActa Mech.20232345673569510.1007/s00707-023-03676-2 – reference: FaroughiSAPawarNFernandesCRaissiMDasSKalantariNKMahjourSKPhysics-guided, physics-informed, and physics-encoded neural networksSci. Comput.202310.48550/arXiv.2211.07377 – reference: Chollet, F.: Deep learning with python, Manning Publications Company, URL https://books.google.ca/books?id= Yo3CAQAACAAJ (2017) – reference: Tartakovsky, A. M., Marrero, C. O., Perdikaris, P., Tartakovsky, G. D., and Barajas- Solano D.: Learning parameters and constitutive relationships with physics informed deep neural networks. arXiv preprint arXiv:1808.03398 (2018) – reference: KadeethumTJorgensenTNickHPhysics-informed neural networks for solving nonlinear diffusivity and Biot’s equationsPLoS ONE20201510.1371/journal.pone.0232683 – reference: LagarisELikasAFotiadisDIArtificial neural networks for solving ordinary and partial differential equationsIEEE Trans. Neural Netw.19989987100010.1109/72.712178 – reference: StavroulakisGEInverse and crack identification problems in engineering mechanics2000New YorkSpringer – reference: Waszczyszyn, Z., Ziemiański, L.: Neural networks in the identification analysis of structural mechanics problems. In: Mróz, Z., Stavroulakis, G.E. (eds.) Parameter identification of materials and structures, CISM International Centre for Mechanical Sciences (Courses and Lectures), p. 469. Springer, Vienna (2005) – reference: Haghighat, E., Raissi, M., Moure, A., Gomez, H., and Juanes, R.: A deep learning framework for solution and discovery in solid mechanics. https://arxiv.org/abs/2003.02751 (2020) – reference: KatsikisDMuradovaADStavroulakisGSA gentle introduction to physics-informed neural networks, with applications in static rod and beam problemsJr. Adv. Appl. & Comput. Math.2022910312810.15377/2409-5761.2022.09.8 – reference: LiuDCNocedalJOn the limited memory BFGS method for large scale optimizationMath. Program.198945503528103824510.1007/BF01589116 – reference: KortesisSPanagiotopoulosPDNeural networks for computing in structural analysis: methods and prospects of applicationsInt. Jr. Numeric. Meth. Eng.1993362305231810.1002/nme.1620361310 – reference: BaydinAPearlmutterBARadulAASiskindJMAutomatic differentiation in machine learning: a surveyJ. Mach. Learn. Res.20181813800512 – reference: Güne, A., Baydin, G., Pearlmutter, B.A., Siskind, J.M.: Automatic differentiation in machine learning: a survey, J. Mach. Learn. Res. 18, 1-43, (2018) URL http://www.jmlr.org/papers/volume18/17-468/17-468.pdf – reference: CaiSMaoZWangZYinMKarniadakisGEPhysics-informed neural networks (PINNs) for fluid mechanics: a reviewActa Mech. Sin.2022371124412280 – reference: MuradovaADStavroulakisGEPhysics-informed neural networks for elastic plate problems with bending and Winkler-type contact effectsJ. Serb. Soc. Comput. Mech.2021154554 – reference: ChenYLuLKarniadakisGEDal NegroLPhysics-informed neural networks for inverse problems in nano-optics and metamaterialsOpt. Express2020288116181163310.1364/OE.384875 – reference: KovachkiNLanthalerSMishraSOn universal approximation and error bounds for Fourier neural operatorJ. Mach. Learn. Res.2021221764353069 – reference: MuradovaADStavroulakisGEThe projective-iterative method and neural network estimation for buckling of elastic plates in nonlinear theoryCommun. Nonlin. Sci. Num. Sim.20071210681088230977410.1016/j.cnsns.2005.09.001 – reference: ShinYDarbonJKarniadakisGEOn the convergence of physics informed neural networks for linear second-order elliptic and parabolic type PDEsCommun. Comput. Phys.20202820422074418852910.4208/cicp.OA-2020-0193 – reference: Stavroulakis, G., Bolzon, G., Waszczyszyn, Z., Ziemianski, L.: Inverse analysis. In: Karihaloo, B., Ritchie, R.O., Milne, I. (eds) Comprehensive structural integrity, numerical and computational methods, vol. 3, Chap 13, pp. 685–718. Elsevier, Amsterdam (2003) – reference: Ruder, S.: An overview of gradient descent optimization algorithms (2017) https://arxiv.org/abs/1609.04747 – reference: BazmaraMMianroodiMSilaniMApplication of physics-informed neural networks for nonlinear buckling analysis of beamsActa. Mech. Sin.202339463774310.1007/s10409-023-22438-x – reference: KarniadakisGEKevrekidisIGLuLPhysics-informed machine learning.Nat. Rev. Phys.2021342244010.1038/s42254-021-00314-5 – reference: NiuSZhangEBazilevsYSrivastavaVModeling finite-strain plasticity using physics-informed neural network and assessment of the network performanceJ. Mech. Phys. Solids2023172452654610.1016/j.jmps.2022.105177 – reference: StavroulakisGEAvdelasAAbdallaKMPanagiotopoulosPDA neural network approach to the modelling, calculation and identification of semi-rigid connections in steel structuresJ. Construct. Steel Res.1997449110510.1016/S0143-974X(97)00039-4 – volume: 9 start-page: 987 year: 1998 ident: 4053_CR24 publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.712178 – volume: 28 start-page: 2042 year: 2020 ident: 4053_CR36 publication-title: Commun. Comput. Phys. doi: 10.4208/cicp.OA-2020-0193 – volume: 44 start-page: 91 year: 1997 ident: 4053_CR38 publication-title: J. Construct. Steel Res. doi: 10.1016/S0143-974X(97)00039-4 – ident: 4053_CR40 – volume: 9 start-page: 103 year: 2022 ident: 4053_CR20 publication-title: Jr. Adv. Appl. & Comput. Math. doi: 10.15377/2409-5761.2022.09.8 – volume: 3 start-page: 218 year: 2021 ident: 4053_CR27 publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-021-00302-5 – ident: 4053_CR13 – volume: 3 start-page: 422 year: 2021 ident: 4053_CR19 publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-021-00314-5 – volume: 19 start-page: 1 year: 1994 ident: 4053_CR28 publication-title: Math. Comput. Model. doi: 10.1016/0895-7177(94)90095-7 – ident: 4053_CR42 – volume-title: Computational mechanics with neural networks year: 2021 ident: 4053_CR44 doi: 10.1007/978-3-030-66111-3 – volume: 14 start-page: 1 year: 2020 ident: 4053_CR9 publication-title: ACM J. Comput. Cult. Herit. – volume: 22 start-page: 1 year: 2021 ident: 4053_CR23 publication-title: J. Mach. Learn. Res. – volume: 37 start-page: 1 year: 2022 ident: 4053_CR4 publication-title: Acta Mech. Sin. – volume: 15 year: 2020 ident: 4053_CR18 publication-title: PLoS ONE doi: 10.1371/journal.pone.0232683 – ident: 4053_CR21 – year: 2020 ident: 4053_CR14 publication-title: J. Eng. Mech. doi: 10.48550/arXiv.2010.09088 – volume: 234 start-page: 5975 year: 2023 ident: 4053_CR5 publication-title: Acta Mech. doi: 10.1007/s00707-023-03691-3 – volume: 172 year: 2023 ident: 4053_CR32 publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2022.105177 – volume: 125 year: 2024 ident: 4053_CR17 publication-title: Int J Numer. Methods Eng. doi: 10.1002/nme.7388 – volume: 36 start-page: 2305 year: 1993 ident: 4053_CR22 publication-title: Int. Jr. Numeric. Meth. Eng. doi: 10.1002/nme.1620361310 – volume: 45 start-page: 503 year: 1989 ident: 4053_CR26 publication-title: Math. Program. doi: 10.1007/BF01589116 – volume: 15 start-page: 45 year: 2021 ident: 4053_CR29 publication-title: J. Serb. Soc. Comput. Mech. – volume-title: Inverse and crack identification problems in engineering mechanics year: 2000 ident: 4053_CR37 – volume: 28 start-page: 11618 issue: 8 year: 2020 ident: 4053_CR6 publication-title: Opt. Express doi: 10.1364/OE.384875 – volume: 113 start-page: 63 year: 1995 ident: 4053_CR41 publication-title: Acta Mech. doi: 10.1007/BF01212634 – ident: 4053_CR39 doi: 10.1016/B0-08-043749-4/03117-7 – volume: 18 start-page: 1 year: 2018 ident: 4053_CR2 publication-title: J. Mach. Learn. Res. – volume: 39 year: 2023 ident: 4053_CR3 publication-title: Acta. Mech. Sin. doi: 10.1007/s10409-023-22438-x – ident: 4053_CR16 – volume: 12 start-page: 1068 year: 2007 ident: 4053_CR31 publication-title: Commun. Nonlin. Sci. Num. Sim. doi: 10.1016/j.cnsns.2005.09.001 – volume: 378 start-page: 686 year: 2019 ident: 4053_CR33 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.10.045 – volume: 234 start-page: 5673 year: 2023 ident: 4053_CR10 publication-title: Acta Mech. doi: 10.1007/s00707-023-03676-2 – ident: 4053_CR7 – ident: 4053_CR35 – volume: 56 start-page: 1001 year: 2008 ident: 4053_CR43 publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2008.01.028 – year: 2023 ident: 4053_CR11 publication-title: Sci. Comput. doi: 10.48550/arXiv.2211.07377 – volume-title: Practical methods of optimization year: 1987 ident: 4053_CR12 – ident: 4053_CR30 – ident: 4053_CR25 – volume: 401 issue: Part B year: 2022 ident: 4053_CR34 publication-title: Comput. Meth. Appl. Mech. Eng. doi: 10.1016/j.cma.2022.115616 – ident: 4053_CR1 – volume: 373 year: 2021 ident: 4053_CR15 publication-title: Comp. Meth. Appl. Mech. Eng. doi: 10.1016/j.cma.2020.113552 – ident: 4053_CR8 doi: 10.1201/9781003017240 |
| SSID | ssj0012741 |
| Score | 2.432658 |
| Snippet | Two-dimensional (plane) elasticity equations in solid mechanics are solved numerically with the use of an ensemble of physics-informed neural networks (PINNs).... |
| SourceID | proquest gale crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 6703 |
| SubjectTerms | Analysis Application programming interface Applications programming Artificial intelligence Boundary conditions Classical and Continuum Physics Commercial aircraft Computer programs Constitutive equations Constitutive relationships Control Deep learning Dynamical Systems Elasticity Engineering Engineering Fluid Dynamics Engineering Thermodynamics Equilibrium equations Exact solutions Finite element method Heat and Mass Transfer Kinematics Machine learning Material properties Mathematical analysis Mathematical models Neural networks Original Paper Physics Plane stress Python Science Software Solid Mechanics Strain Tensors Theoretical and Applied Mechanics Vibration |
| SummonAdditionalLinks | – databaseName: Science Database dbid: M2P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB61lErlQCkPsZQiHyr1QC02md3EOSGEQBxaxIEDNzd-SZUgu-BtVf49M4536UPlwjEvx8lMPF_m8Q3Ax6ExFaIvpBtXTo58XcqmUk5iIHDgWyZsSYXCX-rzc3V11Vxkh1vMaZXzNTEt1G5i2Ud-gFzrQvBiiIfTW8ldozi6mltovIRXhGwKTun6Wl4soghMzdLD30IScB7moplUOpd4biRZKElqPEaJfximv5fnf-Kkyfycvn3uxNdgNQNPcdRryjt44bt1WPmNjnAdXqd0UBs34NtJF_2NufZiEkTv_Iiy51j1TjAHJg3V9RnkUdBuQSrMrgkx5eRZ4QmTc7r27F7kjjVRsMdX-F8t0xHHTbg8Pbk8PpO5F4O0OFYzia40vsGxdwRo3Mi19FhOhWEgOEObPqA1VRuCU0VVY2ka1dSG_j3RBIfW4hYsdZPOb4MwLZYcjUQc2RFZQxUwqNIQ1AxtbREHUMzloG3mKed2Gdd6wbCcZKdJdjrJTtM1-4trpj1Lx5Nnf2Lxan5tNLJtcyUCzY_JsPSRIgOAZAmaAezOZarztx31o0AH8HmuFY-H_3_fnadHew9vStbHVOi4C0uzux_-Ayzbn7Pv8W4vafYD2En9bQ priority: 102 providerName: ProQuest |
| Title | Ensemble of physics-informed neural networks for solving plane elasticity problems with examples |
| URI | https://link.springer.com/article/10.1007/s00707-024-04053-3 https://www.proquest.com/docview/3112654003 |
| Volume | 235 |
| WOSCitedRecordID | wos001302293800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer Link Journals customDbUrl: eissn: 1619-6937 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012741 issn: 0001-5970 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB0VtodygNIWQYGVD5U4tJY2md3EOS5oEYd2uwJUcTPxl4QEAZEFtf--M06yhVIqtRdLSWzHGk9mXmzPG4APA2MyRJ9IN8qcHPo8lUWmnMRA4MCXTNgSA4U_59OpOjsrZm1QWN2ddu-2JKOlXgS7RWYaST5FkuKNUOIS9MjdKU7YcHzybbF3wIQsDehNJMHlQRsq8-c-Hrmj343yk93R6HQO1_5vuK9htQWZYtxoxTq88NUbWHlAPfgWzidV7a_MpRfXQTTLG7VsWFS9E8xySR1UzRnxWtBtQUrKiw_iho_HCk-omw9kz3-INidNLXhNV_jvJRMO1-_g9HByenAk22wL0uJIzSW61PgCR94RZHFDV2KSOBUGgQALXfqA1mRlCE4lWY6pKVSRG_q7RBMcWosbsFxdV34ThCkx5f1GxKEdkr9TAYNKDYHJUOYWcQuSTubatkzknBDjUi84lKPwNAlPR-FpavNx0eam4eH4a-09nkrNYqOebdnGGtD4mO5KjxWZeCRbX2zBTjfbuv16a40cV0VQdkAdfepm99fj59_7_t-qb8OrlBUkhjbuwPL89s7vwkt7P7-ob_vQ259MZ8d9WPqSfo3ljMv8pB_1_SeTJfT5 |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VAgIOPAqIQIE9gDjQFYnHsdcHhCpo1aoh6iGH3hbvS0IqTuiGR38U_5GZtZ3yEL31wDFOPHbsb_ab3Z35BuDZ0JgC0Y-kGxdO5r7MZFUoJzFQcOBrFmxJhcKTcjpVR0fV4Rr86GthOK2yHxPTQO3mltfIXyHXulB4McQ3i8-Su0bx7mrfQqOFxYE__UZTtvh6_x293-dZtrsze7snu64C0uJYLSW6zPgKx94RNbvc1WTZqTAMRMz00Qe0pqhDcGpUlJiZSlWloVkUmuDQWiSzl-ByzsJinCmYHa42LVgJpo22R5Li9GFXo5Mq9ZKsjiRClOQ1Y5T4Gw_-yQZ_bcsmttu99Z89p9twswurxXbrB3dgzTcbcOMXscUNuJqSXW28Cx92mug_mWMv5kG0SztRtgqy3glW-CRTTZsfHwUdFuSgvPAiFpwaLDzNODgZfXkqun48UfB6tvDfaxZbjvdgdhH_9T6sN_PGPwBhasx4rxUxtzlxvQoYVGYokA51aREHMOpfu7adCjs3AznWK_3oBBVNUNEJKprOebk6Z9FqkJz76xeMJs2PjSzbuquzoPtjqS-9rYjekHiuGsBmDyHdjVxRn-FnAFs9CM--_vd1H55v7Slc25u9n-jJ_vTgEVzP2BVSSecmrC9PvvjHcMV-XX6MJ0-SUwnQFwzOnwk7XB0 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFCo48CggAgX2AOIAqyYex14fECo0EVWrKEI99LZ4XxJS64Q6PPrT-HfM2OuUh-itB45-7Npef7MzOzvzDcCzgTEZoh9KN8qcTH2eyCJTTmIg48CXTNjSJAof5NOpOjoqZmvwo8uF4bDKbk5sJmo3t-wj30bOdSHzYoDbIYZFzHYnbxafJVeQ4p3WrpxGC5F9f_aNlm_1671d-tfPk2QyPnz3XsYKA9LiSC0lusT4AkfekZp2qSvpKU6FQSAlTYc-oDVZGYJTwyzHxBSqyA2tqNAEh9YidXsF1nOyMdIerL8dT2cfVlsYzAvT2t5DSVb7IGbsNHl7DcmOJPUoSYZGKPE3rfinbvhrk7bRfZNb__Go3Yab0eAWO62E3IE1X23CjV9oGDfhWhMGa-u78HFc1f7EHHsxD6J1-tSy5Zb1TjD3J3VVtZHztaDTgkSXXTJiwUHDwtNahMPUl2ciVuqpBXu6hf9eMg1zfQ8OL-Nb70Ovmlf-AQhTYsK7sIipTckKUAGDSgyZ2KHMLWIfhh0EtI387Fwm5FivmKUb2GiCjW5go6nNy1WbRctOcuHdLxhZmoeNerZlzMCg92MSML2jSPEhacCiD1sdnHSc02p9jqU-vOoAeX753899eHFvT2GDMKkP9qb7j-B6wlLR5HpuQW95-sU_hqv26_JTffokSpgAfcno_AkbomY3 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ensemble+of+physics-informed+neural+networks+for+solving+plane+elasticity+problems+with+examples&rft.jtitle=Acta+mechanica&rft.au=Mouratidou%2C+Aliki+D&rft.au=Drosopoulos%2C+Georgios+A&rft.au=Stavroulakis%2C+Georgios+E&rft.date=2024-11-01&rft.pub=Springer&rft.issn=0001-5970&rft.volume=235&rft.issue=11&rft.spage=6703&rft_id=info:doi/10.1007%2Fs00707-024-04053-3&rft.externalDocID=A811135389 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-5970&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-5970&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-5970&client=summon |