Ensemble of physics-informed neural networks for solving plane elasticity problems with examples

Two-dimensional (plane) elasticity equations in solid mechanics are solved numerically with the use of an ensemble of physics-informed neural networks (PINNs). The system of equations consists of the kinematic definitions, i.e. the strain–displacement relations, the equilibrium equations connecting...

Full description

Saved in:
Bibliographic Details
Published in:Acta mechanica Vol. 235; no. 11; pp. 6703 - 6722
Main Authors: Mouratidou, Aliki D., Drosopoulos, Georgios A., Stavroulakis, Georgios E.
Format: Journal Article
Language:English
Published: Vienna Springer Vienna 01.11.2024
Springer
Springer Nature B.V
Subjects:
ISSN:0001-5970, 1619-6937
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Two-dimensional (plane) elasticity equations in solid mechanics are solved numerically with the use of an ensemble of physics-informed neural networks (PINNs). The system of equations consists of the kinematic definitions, i.e. the strain–displacement relations, the equilibrium equations connecting a stress tensor with external loading forces and the isotropic constitutive relations for stress and strain tensors. Different boundary conditions for the strain tensor and displacements are considered. The proposed computational approach is based on principles of artificial intelligence and uses a developed open-source machine learning platform, scientific software Tensorflow, written in Python and Keras library, an application programming interface, intended for a deep learning. A deep learning is performed through training the physics-informed neural network model in order to fit the plain elasticity equations and given boundary conditions at collocation points. The numerical technique is tested on an example, where the exact solution is given. Two examples with plane stress problems are calculated with the proposed multi-PINN model. The numerical solution is compared with results obtained after using commercial finite element software. The numerical results have shown that an application of a multi-network approach is more beneficial in comparison with using a single PINN with many outputs. The derived results confirmed the efficiency of the introduced methodology. The proposed technique can be extended and applied to the structures with nonlinear material properties.
AbstractList Two-dimensional (plane) elasticity equations in solid mechanics are solved numerically with the use of an ensemble of physics-informed neural networks (PINNs). The system of equations consists of the kinematic definitions, i.e. the strain–displacement relations, the equilibrium equations connecting a stress tensor with external loading forces and the isotropic constitutive relations for stress and strain tensors. Different boundary conditions for the strain tensor and displacements are considered. The proposed computational approach is based on principles of artificial intelligence and uses a developed open-source machine learning platform, scientific software Tensorflow, written in Python and Keras library, an application programming interface, intended for a deep learning. A deep learning is performed through training the physics-informed neural network model in order to fit the plain elasticity equations and given boundary conditions at collocation points. The numerical technique is tested on an example, where the exact solution is given. Two examples with plane stress problems are calculated with the proposed multi-PINN model. The numerical solution is compared with results obtained after using commercial finite element software. The numerical results have shown that an application of a multi-network approach is more beneficial in comparison with using a single PINN with many outputs. The derived results confirmed the efficiency of the introduced methodology. The proposed technique can be extended and applied to the structures with nonlinear material properties.
Audience Academic
Author Drosopoulos, Georgios A.
Stavroulakis, Georgios E.
Mouratidou, Aliki D.
Author_xml – sequence: 1
  givenname: Aliki D.
  orcidid: 0000-0002-8382-1263
  surname: Mouratidou
  fullname: Mouratidou, Aliki D.
  email: amouratidou@tuc.gr
  organization: School of Production Engineering and Management, Institute of Computational Mechanics and Optimization, Technical University of Crete
– sequence: 2
  givenname: Georgios A.
  surname: Drosopoulos
  fullname: Drosopoulos, Georgios A.
  organization: Discipline of Civil Engineering, School of Engineering and Computing, University of Central Lancashire, Discipline of Civil Engineering, School of Engineering, University of KwaZulu-Natal
– sequence: 3
  givenname: Georgios E.
  surname: Stavroulakis
  fullname: Stavroulakis, Georgios E.
  organization: School of Production Engineering and Management, Institute of Computational Mechanics and Optimization, Technical University of Crete
BookMark eNp9kE1rHDEMhk1JoZu0f6AnQ89O7fF8-RhC2hQCveTuemx549RjT-3Zpvvvo-0UCjkEg4WEnlfSe07OUk5AyEfBLwXnw-eKHx8Yb1rGW95JJt-QneiFYr2SwxnZcc4F69TA35HzWh8xa4ZW7MiPm1RhniLQ7OnycKzBVhaSz2UGRxMciokY1qdcflaKZVpz_B3Sni7RJKAQTV2DDeuRLiWjzlzpU1gfKPwx8xKhvidvvYkVPvyLF-T-y8399S27-_712_XVHbOyG1cmXTOBkh04paRrnZFCuNFzr4YeU_DSTr3x3o2iH2QzqVENU9cqOXknrZUX5NMmi1v8OkBd9WM-lIQTNSo1fddyLrHrcuvamwj6dOZajMXnYA4WLfUB61ejEEJ2clQIjBtgS661gNd4qllDTgiGqAXXJ__15r9G__Vf__VpVvMCXUqYTTm-DskNqtic9lD-n_EK9Qy4Dpvm
CitedBy_id crossref_primary_10_7235_HORT_20250041
crossref_primary_10_1016_j_ijmecsci_2025_110232
crossref_primary_10_3390_app15073697
crossref_primary_10_1103_PhysRevE_111_L023302
crossref_primary_10_3390_modelling5040080
Cites_doi 10.1109/72.712178
10.4208/cicp.OA-2020-0193
10.1016/S0143-974X(97)00039-4
10.15377/2409-5761.2022.09.8
10.1038/s42256-021-00302-5
10.1038/s42254-021-00314-5
10.1016/0895-7177(94)90095-7
10.1007/978-3-030-66111-3
10.1371/journal.pone.0232683
10.48550/arXiv.2010.09088
10.1007/s00707-023-03691-3
10.1016/j.jmps.2022.105177
10.1002/nme.7388
10.1002/nme.1620361310
10.1007/BF01589116
10.1364/OE.384875
10.1007/BF01212634
10.1016/B0-08-043749-4/03117-7
10.1007/s10409-023-22438-x
10.1016/j.cnsns.2005.09.001
10.1016/j.jcp.2018.10.045
10.1007/s00707-023-03676-2
10.1016/j.camwa.2008.01.028
10.48550/arXiv.2211.07377
10.1016/j.cma.2022.115616
10.1016/j.cma.2020.113552
10.1201/9781003017240
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
COPYRIGHT 2024 Springer
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: COPYRIGHT 2024 Springer
DBID AAYXX
CITATION
3V.
7TB
7XB
88I
8AO
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
GUQSH
HCIFZ
KR7
L6V
M2O
M2P
M7S
MBDVC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
S0W
DOI 10.1007/s00707-024-04053-3
DatabaseName CrossRef
ProQuest Central (Corporate)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central Database Suite (ProQuest)
Technology collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
Research Library Prep
SciTech Collection (ProQuest)
Civil Engineering Abstracts
ProQuest Engineering Collection
ProQuest Research Library
Science Database
Engineering Database
Research Library (Corporate)
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Research Library Prep
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Research Library Prep


Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1619-6937
EndPage 6722
ExternalDocumentID A811135389
10_1007_s00707_024_04053_3
GroupedDBID --Z
-5B
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23M
28-
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
88I
8AO
8FE
8FG
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EAD
EAP
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITC
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAS
LLZTM
M2O
M2P
M4Y
M7S
MA-
MK~
ML~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9P
PF-
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S0W
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
T9H
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
Y6R
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8S
Z8T
Z8W
Z92
_50
~02
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7TB
7XB
8FD
8FK
FR3
KR7
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c358t-3d2be935ed993d4da311d8f0f976d4def3cb6affd816732b9897b5493bfd3cc3
IEDL.DBID M2P
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001302293800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0001-5970
IngestDate Wed Nov 05 14:47:16 EST 2025
Sat Nov 29 10:28:28 EST 2025
Sat Nov 29 05:43:00 EST 2025
Tue Nov 18 20:54:59 EST 2025
Fri Feb 21 02:40:37 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-3d2be935ed993d4da311d8f0f976d4def3cb6affd816732b9897b5493bfd3cc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8382-1263
PQID 3112654003
PQPubID 47448
PageCount 20
ParticipantIDs proquest_journals_3112654003
gale_infotracacademiconefile_A811135389
crossref_citationtrail_10_1007_s00707_024_04053_3
crossref_primary_10_1007_s00707_024_04053_3
springer_journals_10_1007_s00707_024_04053_3
PublicationCentury 2000
PublicationDate 20241100
2024-11-00
20241101
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 20241100
PublicationDecade 2020
PublicationPlace Vienna
PublicationPlace_xml – name: Vienna
– name: Wien
PublicationTitle Acta mechanica
PublicationTitleAbbrev Acta Mech
PublicationYear 2024
Publisher Springer Vienna
Springer
Springer Nature B.V
Publisher_xml – name: Springer Vienna
– name: Springer
– name: Springer Nature B.V
References FletcherRPractical methods of optimization19872New YorkJohn Wiley & Sons
KatsikisDMuradovaADStavroulakisGSA gentle introduction to physics-informed neural networks, with applications in static rod and beam problemsJr. Adv. Appl. & Comput. Math.2022910312810.15377/2409-5761.2022.09.8
Stavroulakis, G., Bolzon, G., Waszczyszyn, Z., Ziemianski, L.: Inverse analysis. In: Karihaloo, B., Ritchie, R.O., Milne, I. (eds) Comprehensive structural integrity, numerical and computational methods, vol. 3, Chap 13, pp. 685–718. Elsevier, Amsterdam (2003)
FaroughiSDarvishiARezaeiSOn the order of derivation in the training of physics-informed neural networks: case studies for non-uniform beam structuresActa Mech.20232345673569510.1007/s00707-023-03676-2
LiuDCNocedalJOn the limited memory BFGS method for large scale optimizationMath. Program.198945503528103824510.1007/BF01589116
HaghighatEJuanesRSciann: a keras/tensorflow wrapper for scientific computations and physics-informed deep learning using artificial neural networksComp. Meth. Appl. Mech. Eng.2021373417898110.1016/j.cma.2020.113552
Haghighat, E., Raissi, M., Moure, A., Gomez, H., and Juanes, R.: A deep learning framework for solution and discovery in solid mechanics. https://arxiv.org/abs/2003.02751 (2020)
Ruder, S.: An overview of gradient descent optimization algorithms (2017) https://arxiv.org/abs/1609.04747
ChenYLuLKarniadakisGEDal NegroLPhysics-informed neural networks for inverse problems in nano-optics and metamaterialsOpt. Express2020288116181163310.1364/OE.384875
BaydinAPearlmutterBARadulAASiskindJMAutomatic differentiation in machine learning: a surveyJ. Mach. Learn. Res.20181813800512
Güne, A., Baydin, G., Pearlmutter, B.A., Siskind, J.M.: Automatic differentiation in machine learning: a survey, J. Mach. Learn. Res. 18, 1-43, (2018) URL http://www.jmlr.org/papers/volume18/17-468/17-468.pdf
MeadeAJFernandezAAThe numerical solution of linear ordinary differential equations by feed-forward neural networksMath. Comput. Model.19941912510.1016/0895-7177(94)90095-7
KovachkiNLanthalerSMishraSOn universal approximation and error bounds for Fourier neural operatorJ. Mach. Learn. Res.2021221764353069
Muradova, A.D, Stavroulakis, G.E.: Physics-informed Neural Networks for the solution of unilateral contact problems. In: Book of Proceedings, 13th International Congress on Mechanics HSTAM, pp. 451-459. (2022). https://hstam2022.eap.gr/book-of-proceedings
Chollet, F.: Deep learning with python, Manning Publications Company, URL https://books.google.ca/books?id= Yo3CAQAACAAJ (2017)
ChadhaCHeJAbueiddaDKoricSGuleryuzEJasiukIImproving the accuracy of the deep energy methodActa Mech.202323459755998466984810.1007/s00707-023-03691-3
ShinYDarbonJKarniadakisGEOn the convergence of physics informed neural networks for linear second-order elliptic and parabolic type PDEsCommun. Comput. Phys.20202820422074418852910.4208/cicp.OA-2020-0193
Waszczyszyn, Z., Ziemiański, L.: Neural networks in the identification analysis of structural mechanics problems. In: Mróz, Z., Stavroulakis, G.E. (eds.) Parameter identification of materials and structures, CISM International Centre for Mechanical Sciences (Courses and Lectures), p. 469. Springer, Vienna (2005)
LuLJinPPangGZhangZKarniadakisGELearning nonlinear operators via DeepONet based on the universal approximation theorem of operatorsNat. Mach. Intell.2021321822910.1038/s42256-021-00302-5
RezaeiSHarandiAMoeineddinAXuB-XReeseSA mixed formulation for physics-informed neural networks as a potential solver for engineering problems in heterogeneous domains: comparison with finite element methodComput. Meth. Appl. Mech. Eng.2022401Part B448480410.1016/j.cma.2022.115616
Tartakovsky, A. M., Marrero, C. O., Perdikaris, P., Tartakovsky, G. D., and Barajas- Solano D.: Learning parameters and constitutive relationships with physics informed deep neural networks. arXiv preprint arXiv:1808.03398 (2018)
KortesisSPanagiotopoulosPDNeural networks for computing in structural analysis: methods and prospects of applicationsInt. Jr. Numeric. Meth. Eng.1993362305231810.1002/nme.1620361310
TheocarisPSPanagiotopoulosPDPlasticity including the Bauschinger effect, studied by a neural network approachActa Mech.19951136375136169710.1007/BF01212634
LagarisELikasAFotiadisDIArtificial neural networks for solving ordinary and partial differential equationsIEEE Trans. Neural Netw.19989987100010.1109/72.712178
RaissiMPerdikarisPKarniadakisGEPhysics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equationsJ. Comput. Phys.2019378686707388169510.1016/j.jcp.2018.10.045
Drosopoulos, G.A., Stavroulakis, G.E.: Non-linear mechanics for composite. In: Heterogeneous Structures, CRC Press, Taylor and Francis (2022)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization, computer science, mathematics. In: The International Conference on Learning Representations (ICLR) (2015)
DrosopoulosGAStavroulakisGEData-driven computational homogenization using neural networks: FE2-NN application on damaged masonryACM J. Comput. Cult. Herit.202014119
KadeethumTJorgensenTNickHPhysics-informed neural networks for solving nonlinear diffusivity and Biot’s equationsPLoS ONE20201510.1371/journal.pone.0232683
MuradovaADStavroulakisGEThe projective-iterative method and neural network estimation for buckling of elastic plates in nonlinear theoryCommun. Nonlin. Sci. Num. Sim.20071210681088230977410.1016/j.cnsns.2005.09.001
StavroulakisGEInverse and crack identification problems in engineering mechanics2000New YorkSpringer
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D.G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., Zheng, X.: Tensorflow: a system for large-scale machine learning. In: 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), USENIX Association, Savannah, GA, pp. 265-283. URL https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi. (2016)
HarandiAMoeineddinAKaliskeMReeseSRezaeiSMixed formulation of physics-informed neural networks for thermo-mechanically coupled systems and heterogeneous domainsInt J Numer. Methods Eng.2024125469355010.1002/nme.7388
FaroughiSAPawarNFernandesCRaissiMDasSKalantariNKMahjourSKPhysics-guided, physics-informed, and physics-encoded neural networksSci. Comput.202310.48550/arXiv.2211.07377
NiuSZhangEBazilevsYSrivastavaVModeling finite-strain plasticity using physics-informed neural network and assessment of the network performanceJ. Mech. Phys. Solids2023172452654610.1016/j.jmps.2022.105177
KarniadakisGEKevrekidisIGLuLPhysics-informed machine learning.Nat. Rev. Phys.2021342244010.1038/s42254-021-00314-5
StavroulakisGEAvdelasAAbdallaKMPanagiotopoulosPDA neural network approach to the modelling, calculation and identification of semi-rigid connections in steel structuresJ. Construct. Steel Res.1997449110510.1016/S0143-974X(97)00039-4
YagawaGOishiAComputational mechanics with neural networks2021New YorkSpringer10.1007/978-3-030-66111-3
MuradovaADStavroulakisGEPhysics-informed neural networks for elastic plate problems with bending and Winkler-type contact effectsJ. Serb. Soc. Comput. Mech.2021154554
BazmaraMMianroodiMSilaniMApplication of physics-informed neural networks for nonlinear buckling analysis of beamsActa. Mech. Sin.202339463774310.1007/s10409-023-22438-x
Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart, A., Anandkumar, A.: Fourier neural operator for parametric partial differential equations, arXiv preprint arXiv:2010.08895 (2020)
XiaoYWeiZWangZA limited memory BFGS-type method for large-scale unconstrained optimizationComput. Math. Appl.20085610011009243787210.1016/j.camwa.2008.01.028
GuoMHaghighatEAn energy-based error bound of physics-informed neural network solutions in elasticityJ. Eng. Mech.202010.48550/arXiv.2010.09088
CaiSMaoZWangZYinMKarniadakisGEPhysics-informed neural networks (PINNs) for fluid mechanics: a reviewActa Mech. Sin.2022371124412280
G Yagawa (4053_CR44) 2021
S Rezaei (4053_CR34) 2022; 401
N Kovachki (4053_CR23) 2021; 22
GE Stavroulakis (4053_CR38) 1997; 44
GA Drosopoulos (4053_CR9) 2020; 14
AJ Meade (4053_CR28) 1994; 19
4053_CR7
E Haghighat (4053_CR15) 2021; 373
Y Xiao (4053_CR43) 2008; 56
M Bazmara (4053_CR3) 2023; 39
4053_CR8
AD Muradova (4053_CR29) 2021; 15
S Niu (4053_CR32) 2023; 172
4053_CR42
C Chadha (4053_CR5) 2023; 234
4053_CR21
A Baydin (4053_CR2) 2018; 18
Y Chen (4053_CR6) 2020; 28
4053_CR40
S Kortesis (4053_CR22) 1993; 36
M Raissi (4053_CR33) 2019; 378
4053_CR25
GE Stavroulakis (4053_CR37) 2000
GE Karniadakis (4053_CR19) 2021; 3
S Faroughi (4053_CR10) 2023; 234
R Fletcher (4053_CR12) 1987
SA Faroughi (4053_CR11) 2023
T Kadeethum (4053_CR18) 2020; 15
M Guo (4053_CR14) 2020
Y Shin (4053_CR36) 2020; 28
DC Liu (4053_CR26) 1989; 45
4053_CR1
A Harandi (4053_CR17) 2024; 125
L Lu (4053_CR27) 2021; 3
4053_CR39
S Cai (4053_CR4) 2022; 37
4053_CR16
AD Muradova (4053_CR31) 2007; 12
D Katsikis (4053_CR20) 2022; 9
PS Theocaris (4053_CR41) 1995; 113
E Lagaris (4053_CR24) 1998; 9
4053_CR30
4053_CR13
4053_CR35
References_xml – reference: DrosopoulosGAStavroulakisGEData-driven computational homogenization using neural networks: FE2-NN application on damaged masonryACM J. Comput. Cult. Herit.202014119
– reference: LuLJinPPangGZhangZKarniadakisGELearning nonlinear operators via DeepONet based on the universal approximation theorem of operatorsNat. Mach. Intell.2021321822910.1038/s42256-021-00302-5
– reference: Muradova, A.D, Stavroulakis, G.E.: Physics-informed Neural Networks for the solution of unilateral contact problems. In: Book of Proceedings, 13th International Congress on Mechanics HSTAM, pp. 451-459. (2022). https://hstam2022.eap.gr/book-of-proceedings/
– reference: Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization, computer science, mathematics. In: The International Conference on Learning Representations (ICLR) (2015)
– reference: Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D.G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., Zheng, X.: Tensorflow: a system for large-scale machine learning. In: 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), USENIX Association, Savannah, GA, pp. 265-283. URL https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi. (2016)
– reference: HaghighatEJuanesRSciann: a keras/tensorflow wrapper for scientific computations and physics-informed deep learning using artificial neural networksComp. Meth. Appl. Mech. Eng.2021373417898110.1016/j.cma.2020.113552
– reference: MeadeAJFernandezAAThe numerical solution of linear ordinary differential equations by feed-forward neural networksMath. Comput. Model.19941912510.1016/0895-7177(94)90095-7
– reference: RezaeiSHarandiAMoeineddinAXuB-XReeseSA mixed formulation for physics-informed neural networks as a potential solver for engineering problems in heterogeneous domains: comparison with finite element methodComput. Meth. Appl. Mech. Eng.2022401Part B448480410.1016/j.cma.2022.115616
– reference: TheocarisPSPanagiotopoulosPDPlasticity including the Bauschinger effect, studied by a neural network approachActa Mech.19951136375136169710.1007/BF01212634
– reference: Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart, A., Anandkumar, A.: Fourier neural operator for parametric partial differential equations, arXiv preprint arXiv:2010.08895 (2020)
– reference: RaissiMPerdikarisPKarniadakisGEPhysics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equationsJ. Comput. Phys.2019378686707388169510.1016/j.jcp.2018.10.045
– reference: YagawaGOishiAComputational mechanics with neural networks2021New YorkSpringer10.1007/978-3-030-66111-3
– reference: Drosopoulos, G.A., Stavroulakis, G.E.: Non-linear mechanics for composite. In: Heterogeneous Structures, CRC Press, Taylor and Francis (2022)
– reference: FletcherRPractical methods of optimization19872New YorkJohn Wiley & Sons
– reference: XiaoYWeiZWangZA limited memory BFGS-type method for large-scale unconstrained optimizationComput. Math. Appl.20085610011009243787210.1016/j.camwa.2008.01.028
– reference: GuoMHaghighatEAn energy-based error bound of physics-informed neural network solutions in elasticityJ. Eng. Mech.202010.48550/arXiv.2010.09088
– reference: ChadhaCHeJAbueiddaDKoricSGuleryuzEJasiukIImproving the accuracy of the deep energy methodActa Mech.202323459755998466984810.1007/s00707-023-03691-3
– reference: HarandiAMoeineddinAKaliskeMReeseSRezaeiSMixed formulation of physics-informed neural networks for thermo-mechanically coupled systems and heterogeneous domainsInt J Numer. Methods Eng.2024125469355010.1002/nme.7388
– reference: FaroughiSDarvishiARezaeiSOn the order of derivation in the training of physics-informed neural networks: case studies for non-uniform beam structuresActa Mech.20232345673569510.1007/s00707-023-03676-2
– reference: FaroughiSAPawarNFernandesCRaissiMDasSKalantariNKMahjourSKPhysics-guided, physics-informed, and physics-encoded neural networksSci. Comput.202310.48550/arXiv.2211.07377
– reference: Chollet, F.: Deep learning with python, Manning Publications Company, URL https://books.google.ca/books?id= Yo3CAQAACAAJ (2017)
– reference: Tartakovsky, A. M., Marrero, C. O., Perdikaris, P., Tartakovsky, G. D., and Barajas- Solano D.: Learning parameters and constitutive relationships with physics informed deep neural networks. arXiv preprint arXiv:1808.03398 (2018)
– reference: KadeethumTJorgensenTNickHPhysics-informed neural networks for solving nonlinear diffusivity and Biot’s equationsPLoS ONE20201510.1371/journal.pone.0232683
– reference: LagarisELikasAFotiadisDIArtificial neural networks for solving ordinary and partial differential equationsIEEE Trans. Neural Netw.19989987100010.1109/72.712178
– reference: StavroulakisGEInverse and crack identification problems in engineering mechanics2000New YorkSpringer
– reference: Waszczyszyn, Z., Ziemiański, L.: Neural networks in the identification analysis of structural mechanics problems. In: Mróz, Z., Stavroulakis, G.E. (eds.) Parameter identification of materials and structures, CISM International Centre for Mechanical Sciences (Courses and Lectures), p. 469. Springer, Vienna (2005)
– reference: Haghighat, E., Raissi, M., Moure, A., Gomez, H., and Juanes, R.: A deep learning framework for solution and discovery in solid mechanics. https://arxiv.org/abs/2003.02751 (2020)
– reference: KatsikisDMuradovaADStavroulakisGSA gentle introduction to physics-informed neural networks, with applications in static rod and beam problemsJr. Adv. Appl. & Comput. Math.2022910312810.15377/2409-5761.2022.09.8
– reference: LiuDCNocedalJOn the limited memory BFGS method for large scale optimizationMath. Program.198945503528103824510.1007/BF01589116
– reference: KortesisSPanagiotopoulosPDNeural networks for computing in structural analysis: methods and prospects of applicationsInt. Jr. Numeric. Meth. Eng.1993362305231810.1002/nme.1620361310
– reference: BaydinAPearlmutterBARadulAASiskindJMAutomatic differentiation in machine learning: a surveyJ. Mach. Learn. Res.20181813800512
– reference: Güne, A., Baydin, G., Pearlmutter, B.A., Siskind, J.M.: Automatic differentiation in machine learning: a survey, J. Mach. Learn. Res. 18, 1-43, (2018) URL http://www.jmlr.org/papers/volume18/17-468/17-468.pdf
– reference: CaiSMaoZWangZYinMKarniadakisGEPhysics-informed neural networks (PINNs) for fluid mechanics: a reviewActa Mech. Sin.2022371124412280
– reference: MuradovaADStavroulakisGEPhysics-informed neural networks for elastic plate problems with bending and Winkler-type contact effectsJ. Serb. Soc. Comput. Mech.2021154554
– reference: ChenYLuLKarniadakisGEDal NegroLPhysics-informed neural networks for inverse problems in nano-optics and metamaterialsOpt. Express2020288116181163310.1364/OE.384875
– reference: KovachkiNLanthalerSMishraSOn universal approximation and error bounds for Fourier neural operatorJ. Mach. Learn. Res.2021221764353069
– reference: MuradovaADStavroulakisGEThe projective-iterative method and neural network estimation for buckling of elastic plates in nonlinear theoryCommun. Nonlin. Sci. Num. Sim.20071210681088230977410.1016/j.cnsns.2005.09.001
– reference: ShinYDarbonJKarniadakisGEOn the convergence of physics informed neural networks for linear second-order elliptic and parabolic type PDEsCommun. Comput. Phys.20202820422074418852910.4208/cicp.OA-2020-0193
– reference: Stavroulakis, G., Bolzon, G., Waszczyszyn, Z., Ziemianski, L.: Inverse analysis. In: Karihaloo, B., Ritchie, R.O., Milne, I. (eds) Comprehensive structural integrity, numerical and computational methods, vol. 3, Chap 13, pp. 685–718. Elsevier, Amsterdam (2003)
– reference: Ruder, S.: An overview of gradient descent optimization algorithms (2017) https://arxiv.org/abs/1609.04747
– reference: BazmaraMMianroodiMSilaniMApplication of physics-informed neural networks for nonlinear buckling analysis of beamsActa. Mech. Sin.202339463774310.1007/s10409-023-22438-x
– reference: KarniadakisGEKevrekidisIGLuLPhysics-informed machine learning.Nat. Rev. Phys.2021342244010.1038/s42254-021-00314-5
– reference: NiuSZhangEBazilevsYSrivastavaVModeling finite-strain plasticity using physics-informed neural network and assessment of the network performanceJ. Mech. Phys. Solids2023172452654610.1016/j.jmps.2022.105177
– reference: StavroulakisGEAvdelasAAbdallaKMPanagiotopoulosPDA neural network approach to the modelling, calculation and identification of semi-rigid connections in steel structuresJ. Construct. Steel Res.1997449110510.1016/S0143-974X(97)00039-4
– volume: 9
  start-page: 987
  year: 1998
  ident: 4053_CR24
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.712178
– volume: 28
  start-page: 2042
  year: 2020
  ident: 4053_CR36
  publication-title: Commun. Comput. Phys.
  doi: 10.4208/cicp.OA-2020-0193
– volume: 44
  start-page: 91
  year: 1997
  ident: 4053_CR38
  publication-title: J. Construct. Steel Res.
  doi: 10.1016/S0143-974X(97)00039-4
– ident: 4053_CR40
– volume: 9
  start-page: 103
  year: 2022
  ident: 4053_CR20
  publication-title: Jr. Adv. Appl. & Comput. Math.
  doi: 10.15377/2409-5761.2022.09.8
– volume: 3
  start-page: 218
  year: 2021
  ident: 4053_CR27
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-021-00302-5
– ident: 4053_CR13
– volume: 3
  start-page: 422
  year: 2021
  ident: 4053_CR19
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-021-00314-5
– volume: 19
  start-page: 1
  year: 1994
  ident: 4053_CR28
  publication-title: Math. Comput. Model.
  doi: 10.1016/0895-7177(94)90095-7
– ident: 4053_CR42
– volume-title: Computational mechanics with neural networks
  year: 2021
  ident: 4053_CR44
  doi: 10.1007/978-3-030-66111-3
– volume: 14
  start-page: 1
  year: 2020
  ident: 4053_CR9
  publication-title: ACM J. Comput. Cult. Herit.
– volume: 22
  start-page: 1
  year: 2021
  ident: 4053_CR23
  publication-title: J. Mach. Learn. Res.
– volume: 37
  start-page: 1
  year: 2022
  ident: 4053_CR4
  publication-title: Acta Mech. Sin.
– volume: 15
  year: 2020
  ident: 4053_CR18
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0232683
– ident: 4053_CR21
– year: 2020
  ident: 4053_CR14
  publication-title: J. Eng. Mech.
  doi: 10.48550/arXiv.2010.09088
– volume: 234
  start-page: 5975
  year: 2023
  ident: 4053_CR5
  publication-title: Acta Mech.
  doi: 10.1007/s00707-023-03691-3
– volume: 172
  year: 2023
  ident: 4053_CR32
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2022.105177
– volume: 125
  year: 2024
  ident: 4053_CR17
  publication-title: Int J Numer. Methods Eng.
  doi: 10.1002/nme.7388
– volume: 36
  start-page: 2305
  year: 1993
  ident: 4053_CR22
  publication-title: Int. Jr. Numeric. Meth. Eng.
  doi: 10.1002/nme.1620361310
– volume: 45
  start-page: 503
  year: 1989
  ident: 4053_CR26
  publication-title: Math. Program.
  doi: 10.1007/BF01589116
– volume: 15
  start-page: 45
  year: 2021
  ident: 4053_CR29
  publication-title: J. Serb. Soc. Comput. Mech.
– volume-title: Inverse and crack identification problems in engineering mechanics
  year: 2000
  ident: 4053_CR37
– volume: 28
  start-page: 11618
  issue: 8
  year: 2020
  ident: 4053_CR6
  publication-title: Opt. Express
  doi: 10.1364/OE.384875
– volume: 113
  start-page: 63
  year: 1995
  ident: 4053_CR41
  publication-title: Acta Mech.
  doi: 10.1007/BF01212634
– ident: 4053_CR39
  doi: 10.1016/B0-08-043749-4/03117-7
– volume: 18
  start-page: 1
  year: 2018
  ident: 4053_CR2
  publication-title: J. Mach. Learn. Res.
– volume: 39
  year: 2023
  ident: 4053_CR3
  publication-title: Acta. Mech. Sin.
  doi: 10.1007/s10409-023-22438-x
– ident: 4053_CR16
– volume: 12
  start-page: 1068
  year: 2007
  ident: 4053_CR31
  publication-title: Commun. Nonlin. Sci. Num. Sim.
  doi: 10.1016/j.cnsns.2005.09.001
– volume: 378
  start-page: 686
  year: 2019
  ident: 4053_CR33
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.10.045
– volume: 234
  start-page: 5673
  year: 2023
  ident: 4053_CR10
  publication-title: Acta Mech.
  doi: 10.1007/s00707-023-03676-2
– ident: 4053_CR7
– ident: 4053_CR35
– volume: 56
  start-page: 1001
  year: 2008
  ident: 4053_CR43
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2008.01.028
– year: 2023
  ident: 4053_CR11
  publication-title: Sci. Comput.
  doi: 10.48550/arXiv.2211.07377
– volume-title: Practical methods of optimization
  year: 1987
  ident: 4053_CR12
– ident: 4053_CR30
– ident: 4053_CR25
– volume: 401
  issue: Part B
  year: 2022
  ident: 4053_CR34
  publication-title: Comput. Meth. Appl. Mech. Eng.
  doi: 10.1016/j.cma.2022.115616
– ident: 4053_CR1
– volume: 373
  year: 2021
  ident: 4053_CR15
  publication-title: Comp. Meth. Appl. Mech. Eng.
  doi: 10.1016/j.cma.2020.113552
– ident: 4053_CR8
  doi: 10.1201/9781003017240
SSID ssj0012741
Score 2.4327397
Snippet Two-dimensional (plane) elasticity equations in solid mechanics are solved numerically with the use of an ensemble of physics-informed neural networks (PINNs)....
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6703
SubjectTerms Analysis
Application programming interface
Applications programming
Artificial intelligence
Boundary conditions
Classical and Continuum Physics
Commercial aircraft
Computer programs
Constitutive equations
Constitutive relationships
Control
Deep learning
Dynamical Systems
Elasticity
Engineering
Engineering Fluid Dynamics
Engineering Thermodynamics
Equilibrium equations
Exact solutions
Finite element method
Heat and Mass Transfer
Kinematics
Machine learning
Material properties
Mathematical analysis
Mathematical models
Neural networks
Original Paper
Physics
Plane stress
Python
Science
Software
Solid Mechanics
Strain
Tensors
Theoretical and Applied Mechanics
Vibration
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA66etCDb3F1lRwEDxpom26bHBdZ8bSILrK32DwKwtpdtlX03ztJ0_Ut6LFtOg0z08mXx3yD0HEiVayNXdcALEpixRXJgkwTqplRgYxCI7UrNpEOBmw04lc-KaxsTrs3W5IuUs-T3RwzDYExhYDjdSmhi2gJhjtmCzZc39zO9w4sIUsNekMCcDnwqTLfy_gwHH0Oyl92R92gc7H-v-5uoDUPMnGv9opNtGCKLbT6jnpwG931i9I8yLHBkxzXyxslqVlUjcaW5RIEFPUZ8RLDbQxOahcf8NQej8UGULc9kF29YF-TpsR2TReb58wSDpc7aHjRH55fEl9tgSiwUwXWiaThtGs0QBYd64yGoWZ5kANggUuTUyWTLM81C5OURpIznkqYXVKZa6oU3UWtYlKYPYRpwrlM0oixzMQw4WOsm4YK5kopoDGu4zYKG50L5ZnIbUGMsZhzKDvlCVCecMoTtI1O5-9Max6OX1ufWFMKqzaQrDKfawD9s3RXoscgxFOI9byNOo21hf97S0FtXhVA2QAEnTXWfXv883f3_9b8AK1E1kFcamMHtarZozlEy-qpui9nR86rXwH5__DM
  priority: 102
  providerName: Springer Nature
Title Ensemble of physics-informed neural networks for solving plane elasticity problems with examples
URI https://link.springer.com/article/10.1007/s00707-024-04053-3
https://www.proquest.com/docview/3112654003
Volume 235
WOSCitedRecordID wos001302293800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1619-6937
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012741
  issn: 0001-5970
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fTxQxEJ4oaAIPoijhEEgfTHzQxt3t3m77ZJAc8cXzAsTwVrc_NjGBvYMeRv57Zrq9QzHy4kuT-9Xdu2-u83U68w3Am8rY0nmKayAX5aVVljdZ47hw0tvMFLk3LjabqMdjeXamJingFlJa5WJNjAu1m1qKkX8QVOuC9CITH2eXnLpG0elqaqHxGFaR2eSU0vWlmCxPEUiapae_OUfinKWimVg6F3VuOHoojmY8FFz84ZjuL89_nZNG93O08b83_hyeJeLJDnpLeQGPfLcJ67_JEW7C05gOasNL-D7qgr8w555NW9YHPwLvNVa9Y6SBiVN1fQZ5YPg0QxOm0ASbUfIs88jJKV17fsNSx5rAKOLL_K-G5IjDKzg9Gp0efuapFwO3iOIcsSuMV2LoHRIaV7oGv5aTbdYincGHvhXWVE3bOplXtSiMkqo2uPcUpnXCWrEFK92089vARKWUqepCysaXuB2UcljnFndSNXI15coB5AsctE065dQu41wvFZYjdhqx0xE7LQbwbvmZWa_S8eC73xK8mn42nNk2qRIB74_EsPSBRAcg0BOoAewuMNXpvx30HaADeL-wiruX_33dnYdnew1rBdljLHTchZX51bXfgyf25_xHuNqH1U-j8eR4nyz8axwnNNYnOB6ffLsF_m8CXQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTxRBEK4gaNADKkJYRe2DxoN0nJmenek-GEMQAgE3HPbArZ1-TGKCswu9qPwo_6NVPTOLaOTGweO-antmvup6dNVXAK8KY3PnKa-BvijPrbK8SirHhZPeJiZLvXFx2EQ5GsmTE3W8AD_7Xhgqq-z3xLhRu4mlHPk7Qb0u6F4k4sP0jNPUKDpd7UdotLA49JffMWQL7w8-4vN9nWV7u-Odfd5NFeAW1zPDVWTGKzH0Dk2zy12Fkp2skxoNM770tbCmqOraybQoRWaUVKXBKEqY2glrBYq9A0s5EYtRpWB2PD-0ICaY1ttOOfrpSdejEzv1Iq0OR4PIUWuGgotrdvBPa_DXsWy0dnsP_7P79AhWOreabbd68BgWfLMKD34jW1yFe7HY1YYn8Hm3Cf6rOfVsUrM2tRN4yyDrHSOGTxTVtPXxgeHbDBWUEi9sSqXBzGPEQcXos0vWzeMJjPLZzP-oiGw5rMH4Nq51HRabSeM3gIlCKVOUmZSVzzHYlXJYphbjxBI9UeXyAaT9Y9e2Y2GnYSCnes4fHaGiESo6QkWLAbyd_2bacpDc-O03hCZNtw0l26rrs8D1EdWX3pZo3gTaOTWAzR5Cutu5gr7CzwC2ehBeffzv_316s7SXsLw__nSkjw5Gh8_gfkaqEFs6N2Fxdn7hn8Nd-232JZy_iErFQN8yOH8BDL5cYQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFBAceBQqAgX2AOJAV7W9jr17QKjQRFRFUYR66G3xPiwhtU7ohkd_Gv-OmbWd8hC99cAxibNer7_ZeezMNwDPCmNz5ymugbYoz62yvEoqx4WT3iYmS71xsdlEOZ3KoyM1W4MffS0MpVX2e2LcqN3cUox8R1CtC5oXidipu7SI2d7k9eIzpw5SdNLat9NoIXLgz76h-xZe7e_hu36eZZPx4dt3vOswwC3ObYkzyoxXYuQdqmmXuwrv4mSd1Kik8aOvhTVFVddOpkUpMqOkKg16VMLUTlgrcNgrsF6ijZEPYP3NeDr7sDrCIF6Y1vZOOVrtSVexE-v2IskOR_XIUYZGgovftOKfuuGvQ9qo-ya3_-NVuwO3OoOb7bYSchfWfLMBN3-hYdyAazEN1oZ78HHcBH9ijj2b16wN-gTecst6x4j7E4dq2sz5wPBrhqJLIRm2oKRh5tEXoTT15RnrOvUERpFu5r9XRMMc7sPhZTzrJgyaeeMfABOFUqYoMykrn6MbLOWoTC16kCXaqMrlQ0h7CGjb8bNTm5BjvWKWjrDRCBsdYaPFEF6u_rNo2UkuvPoFIUvTsuHItuoqMHB-RAKmdyUqPoEaUA1hq4eT7va0oM-xNITtHpDnP__7vg8vHu0pXEdM6vf704NHcCMjqYi1nlswWJ5-8Y_hqv26_BROn3QSxkBfMjp_AjYpZns
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ensemble+of+physics-informed+neural+networks+for+solving+plane+elasticity+problems+with+examples&rft.jtitle=Acta+mechanica&rft.au=Mouratidou%2C+Aliki+D&rft.au=Drosopoulos%2C+Georgios+A&rft.au=Stavroulakis%2C+Georgios+E&rft.date=2024-11-01&rft.pub=Springer&rft.issn=0001-5970&rft.volume=235&rft.issue=11&rft.spage=6703&rft_id=info:doi/10.1007%2Fs00707-024-04053-3&rft.externalDocID=A811135389
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-5970&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-5970&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-5970&client=summon