Deep neural networks for choice analysis: A statistical learning theory perspective

•Used statistical learning theory to evaluate DNNs in choice analysis.•Operationalized DNN interpretability by using the choice probability functions.•Provided a tight upper bound on the estimation error of DNNs.•Conducted experiments to identify when DNNs outperform classical models.•DNNs can be mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transportation research. Part B: methodological Jg. 148; S. 60 - 81
Hauptverfasser: Wang, Shenhao, Wang, Qingyi, Bailey, Nate, Zhao, Jinhua
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Oxford Elsevier Ltd 01.06.2021
Elsevier Science Ltd
Schlagworte:
ISSN:0191-2615, 1879-2367
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •Used statistical learning theory to evaluate DNNs in choice analysis.•Operationalized DNN interpretability by using the choice probability functions.•Provided a tight upper bound on the estimation error of DNNs.•Conducted experiments to identify when DNNs outperform classical models.•DNNs can be more predictive and interpretable than BNL and MNL models. Although researchers increasingly use deep neural networks (DNN) to analyze individual choices, overfitting and interpretability issues remain obstacles in theory and practice. This study presents a statistical learning theoretical framework to examine the tradeoff between estimation and approximation errors, and between the quality of prediction and of interpretation. It provides an upper bound on the estimation error of the prediction quality in DNN, measured by zero-one and log losses, shedding light on why DNN models do not overfit. It proposes a metric for interpretation quality by formulating a function approximation loss that measures the difference between true and estimated choice probability functions. It argues that the binary logit (BNL) and multinomial logit (MNL) models are the specific cases of DNNs, since the latter always has smaller approximation errors. We explore the relative performance of DNN and classical choice models through three simulation scenarios comparing DNN, BNL, and binary mixed logit models (BXL), as well as one experiment comparing DNN to BNL, BXL, MNL, and mixed logit (MXL) in analyzing the choice of trip purposes based on the National Household Travel Survey 2017. The results indicate that DNN can be used for choice analysis beyond the current practice of demand forecasting because it has the inherent utility interpretation and the power of automatically learning utility specification. Our results suggest DNN outperforms BNL, BXL, MNL, and MXL models in both prediction and interpretation when the sample size is large (≥O(104)), the input dimension is high, or the true data generating process is complex, while performing worse when the opposite is true. DNN outperforms BNL and BXL in zero-one, log, and approximation losses for most of the experiments, and the larger sample size leads to greater incremental value of using DNN over classical discrete choice models. Overall, this study introduces the statistical learning theory as a new foundation for high-dimensional data, complex statistical models, and non-asymptotic data regimes in choice analysis, and the experiments show the effective prediction and interpretation of DNN for its applications to policy and behavioral analysis.
AbstractList Although researchers increasingly use deep neural networks (DNN) to analyze individual choices, overfitting and interpretability issues remain obstacles in theory and practice. This study presents a statistical learning theoretical framework to examine the tradeoff between estimation and approximation errors, and between the quality of prediction and of interpretation. It provides an upper bound on the estimation error of the prediction quality in DNN, measured by zero-one and log losses, shedding light on why DNN models do not overfit. It proposes a metric for interpretation quality by formulating a function approximation loss that measures the difference between true and estimated choice probability functions. It argues that the binary logit (BNL) and multinomial logit (MNL) models are the specific cases of DNNs, since the latter always has smaller approximation errors. We explore the relative performance of DNN and classical choice models through three simulation scenarios comparing DNN, BNL, and binary mixed logit models (BXL), as well as one experiment comparing DNN to BNL, BXL, MNL, and mixed logit (MXL) in analyzing the choice of trip purposes based on the National Household Travel Survey 2017. The results indicate that DNN can be used for choice analysis beyond the current practice of demand forecasting because it has the inherent utility interpretation and the power of automatically learning utility specification. Our results suggest DNN outperforms BNL, BXL, MNL, and MXL models in both prediction and interpretation when the sample size is large (≥ O ( 104)), the input dimension is high, or the true data generating process is complex, while performing worse when the opposite is true. DNN outperforms BNL and BXL in zero-one, log, and approximation losses for most of the experiments, and the larger sample size leads to greater incremental value of using DNN over classical discrete choice models. Overall, this study introduces the statistical learning theory as a new foundation for high-dimensional data, complex statistical models, and non-asymptotic data regimes in choice analysis, and the experiments show the effective prediction and interpretation of DNN for its applications to policy and behavioral analysis.
•Used statistical learning theory to evaluate DNNs in choice analysis.•Operationalized DNN interpretability by using the choice probability functions.•Provided a tight upper bound on the estimation error of DNNs.•Conducted experiments to identify when DNNs outperform classical models.•DNNs can be more predictive and interpretable than BNL and MNL models. Although researchers increasingly use deep neural networks (DNN) to analyze individual choices, overfitting and interpretability issues remain obstacles in theory and practice. This study presents a statistical learning theoretical framework to examine the tradeoff between estimation and approximation errors, and between the quality of prediction and of interpretation. It provides an upper bound on the estimation error of the prediction quality in DNN, measured by zero-one and log losses, shedding light on why DNN models do not overfit. It proposes a metric for interpretation quality by formulating a function approximation loss that measures the difference between true and estimated choice probability functions. It argues that the binary logit (BNL) and multinomial logit (MNL) models are the specific cases of DNNs, since the latter always has smaller approximation errors. We explore the relative performance of DNN and classical choice models through three simulation scenarios comparing DNN, BNL, and binary mixed logit models (BXL), as well as one experiment comparing DNN to BNL, BXL, MNL, and mixed logit (MXL) in analyzing the choice of trip purposes based on the National Household Travel Survey 2017. The results indicate that DNN can be used for choice analysis beyond the current practice of demand forecasting because it has the inherent utility interpretation and the power of automatically learning utility specification. Our results suggest DNN outperforms BNL, BXL, MNL, and MXL models in both prediction and interpretation when the sample size is large (≥O(104)), the input dimension is high, or the true data generating process is complex, while performing worse when the opposite is true. DNN outperforms BNL and BXL in zero-one, log, and approximation losses for most of the experiments, and the larger sample size leads to greater incremental value of using DNN over classical discrete choice models. Overall, this study introduces the statistical learning theory as a new foundation for high-dimensional data, complex statistical models, and non-asymptotic data regimes in choice analysis, and the experiments show the effective prediction and interpretation of DNN for its applications to policy and behavioral analysis.
Author Wang, Shenhao
Zhao, Jinhua
Wang, Qingyi
Bailey, Nate
Author_xml – sequence: 1
  givenname: Shenhao
  surname: Wang
  fullname: Wang, Shenhao
– sequence: 2
  givenname: Qingyi
  surname: Wang
  fullname: Wang, Qingyi
– sequence: 3
  givenname: Nate
  surname: Bailey
  fullname: Bailey, Nate
– sequence: 4
  givenname: Jinhua
  surname: Zhao
  fullname: Zhao, Jinhua
  email: jinhua@mit.edu
BookMark eNp9kD1PwzAURS1UJErhB7BFYk7ws524gQnxLSExALPlOs_UJcTBdkH997gqEwPTXe55evccksngByTkBGgFFJqzVZXComKUQUV5RQH2yBTmsi0Zb-SETCm0ULIG6gNyGOOKUsoFhSl5vkYciwHXQfc50rcP77GwPhRm6Z3BQg-630QXz4vLIiadXEzO5G6POgxueCvSEn3YFCOGOKJJ7guPyL7VfcTj35yR19ubl6v78vHp7uHq8rE0vJ6nkhveCaY1RdQLEDXXYCTTtsNFK7AFqeVcMjOvUVjR2aZhpmMIzULw1kpr-Yyc7u6OwX-uMSa18uuQ_42K1UIwSUVT55bctUzwMQa0yrjtDj-koF2vgKqtQbVS2aDaGlSUq2wwk_CHHIP70GHzL3OxYzAP_3IYVDQOB4OdC9mO6rz7h_4Bp7WMjw
CitedBy_id crossref_primary_10_1016_j_trb_2023_102869
crossref_primary_10_1080_03081060_2025_2520571
crossref_primary_10_1177_03611981241310399
crossref_primary_10_1016_j_trb_2025_103318
crossref_primary_10_1016_j_rineng_2025_105714
crossref_primary_10_1016_j_tre_2025_104154
crossref_primary_10_1049_itr2_12514
crossref_primary_10_1108_JEIM_01_2022_0025
crossref_primary_10_1007_s40864_025_00245_9
crossref_primary_10_1016_j_trc_2021_103410
crossref_primary_10_1080_10298436_2023_2257852
crossref_primary_10_1016_j_eswa_2024_125196
crossref_primary_10_1109_TITS_2022_3216462
crossref_primary_10_1371_journal_pone_0331664
crossref_primary_10_1016_j_trc_2022_103924
crossref_primary_10_3390_rs13183743
crossref_primary_10_1016_j_socscimed_2023_115910
crossref_primary_10_1016_j_trc_2024_104618
crossref_primary_10_1186_s42400_023_00161_0
crossref_primary_10_1016_j_aap_2023_107282
crossref_primary_10_1016_j_trb_2024_103061
crossref_primary_10_1016_j_trb_2022_02_007
crossref_primary_10_1111_joes_70008
crossref_primary_10_1177_03611981231162598
crossref_primary_10_1016_j_trc_2024_104671
crossref_primary_10_3390_app12189156
Cites_doi 10.1111/ecin.12364
10.1016/j.trc.2017.02.024
10.1007/BF02551274
10.1214/ss/1009213726
10.1016/S1361-9209(97)00009-6
10.1109/72.788640
10.1016/0893-6080(89)90020-8
10.1007/s11633-017-1054-2
10.2307/2296997
10.1016/j.trc.2005.04.002
10.1016/S1366-5545(99)00030-7
10.1016/j.dsp.2017.10.011
10.1016/j.mcm.2006.02.002
10.1016/j.trc.2010.10.004
10.1016/j.trpro.2015.09.037
10.1080/03081060.2015.1079385
10.1016/j.trc.2018.03.001
10.1016/j.trb.2013.09.008
10.1016/j.trc.2020.01.012
10.1016/j.jocm.2020.100236
10.1038/nature14539
10.1016/B978-0-444-52936-7.50016-1
10.1016/0893-6080(91)90009-T
10.1002/(SICI)1099-131X(200004)19:3<177::AID-FOR738>3.0.CO;2-6
10.1016/j.trb.2018.10.020
10.1198/016214506000001437
10.1198/016214505000000907
10.1177/0042098009356125
10.1016/j.eswa.2017.01.057
10.1016/S0191-2615(99)00014-4
10.1016/S0198-9715(98)00036-2
10.1016/j.tbs.2018.09.002
10.1257/jep.31.2.87
10.1016/j.trc.2020.102701
10.1109/TPAMI.2013.50
10.3141/1854-06
ContentType Journal Article
Copyright 2021
Copyright Elsevier Science Ltd. Jun 2021
Copyright_xml – notice: 2021
– notice: Copyright Elsevier Science Ltd. Jun 2021
DBID AAYXX
CITATION
7ST
8FD
C1K
FR3
KR7
SOI
DOI 10.1016/j.trb.2021.03.011
DatabaseName CrossRef
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Civil Engineering Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
EISSN 1879-2367
EndPage 81
ExternalDocumentID 10_1016_j_trb_2021_03_011
S0191261521000564
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JO
AAAKF
AAAKG
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABDEX
ABDMP
ABFNM
ABLJU
ABMAC
ABMMH
ABPPZ
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHRSL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
APLSM
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HMY
HVGLF
HZ~
H~9
IHE
J1W
KOM
LY1
LY7
M3Y
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SET
SEW
SPCBC
SSB
SSD
SSO
SSS
SSZ
T5K
WUQ
XPP
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ADNMO
AEIPS
AFJKZ
AGQPQ
AIIUN
ANKPU
APXCP
CITATION
EFKBS
~HD
7ST
8FD
AGCQF
C1K
FR3
KR7
SOI
ID FETCH-LOGICAL-c358t-3c3d42aa0eeab1453a1c72afdeb94e917a7872c85e4f4df662cd2e16b439f7ff3
ISICitedReferencesCount 31
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000655548800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0191-2615
IngestDate Wed Aug 13 11:35:52 EDT 2025
Tue Nov 18 21:26:34 EST 2025
Sat Nov 29 07:25:56 EST 2025
Fri Feb 23 02:45:45 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Statistical learning theory
Deep neural networks
Interpretability
Choice modeling
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c358t-3c3d42aa0eeab1453a1c72afdeb94e917a7872c85e4f4df662cd2e16b439f7ff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2544270465
PQPubID 2047452
PageCount 22
ParticipantIDs proquest_journals_2544270465
crossref_citationtrail_10_1016_j_trb_2021_03_011
crossref_primary_10_1016_j_trb_2021_03_011
elsevier_sciencedirect_doi_10_1016_j_trb_2021_03_011
PublicationCentury 2000
PublicationDate June 2021
2021-06-00
20210601
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: June 2021
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Transportation research. Part B: methodological
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Vapnik (bib0069) 2013
Neyshabur, Tomioka, Srebro (bib0051) 2015
Wang, Wang, Zhao (bib0074) 2020
Cohen, Ericson, Laibson, White (bib0018) 2016
Vapnik (bib0068) 1999; 10
Breiman (bib0013) 2001; 16
Train (bib0067) 2009
Zhou, Khosla, Lapedriza, Oliva, Torralba (bib0078) 2014
Lipton (bib0046) 2016
Hornik (bib0037) 1991; 4
Karlaftis, Vlahogianni (bib0039) 2011; 19
Cantarella, de Luca (bib0014) 2005; 13
Cervero, Kockelman (bib0016) 1997; 2
Cheng, Chen, De Vos, Lai, Witlox (bib0017) 2019; 14
Von Luxburg, Schölkopf (bib0070) 2011; 10
Bengio, Courville, Vincent (bib0008) 2013; 35
Omrani (bib0052) 2015; 10
Golowich, Rakhlin, Shamir (bib0026) 2017
Bentz, Merunka (bib0009) 2000; 19
Hornik, Stinchcombe, White (bib0038) 1989; 2
Zegras (bib0077) 2010; 47
Bartlett, Mendelson (bib0006) 2002; 3
Train (bib0066) 1980; 47
He, Zhang, Ren, Sun (bib0030) 2015
Gneiting, Raftery (bib0025) 2007; 102
Rolnick, Tegmark (bib0060) 2017
Wainwright (bib0071) 2019; 48
Rao, Sikdar, Rao, Dhingra (bib0058) 1998; 22
Szegedy, Zaremba, Sutskever, Bruna, Erhan, Goodfellow, Fergus (bib0064) 2014
Bertsimas, Delarue, Jaillet, Martin (bib0010) 2019
Doshi-Velez, Kim (bib0022) 2017
Cybenko (bib0019) 1989; 2
Hinton, Vinyals, Dean (bib0036) 2015
Hagenauer, Helbich (bib0028) 2017; 78
Hillel, Bierlaire, Elshafie, Jin (bib0035) 2020
Montavon, Samek, Muller (bib0048) 2018; 73
Ledoux, Talagrand (bib0044) 2013
He, Zhang, Ren, Sun (bib0031) 2016
Wu, Tan, Qin, Ran, Jiang (bib0075) 2018; 90
Mozolin, Thill, Usery (bib0049) 2000; 34
Sontag (bib0062) 1998; 168
Bartlett, Jordan, McAuliffe (bib0005) 2006; 101
Wang, Wang, Zhao (bib0073) 2020; 118
Liao, Poggio (bib0045) 2018
Goodfellow, Bengio, Courville, Bengio (bib0027) 2016; 1
Poggio, Liao, Miranda, Banburski, Boix, Hidary (bib0055) 2018
LeCun, Bengio, Hinton (bib0043) 2015; 521
Mullainathan, Spiess (bib0050) 2017; 31
McFadden (bib0047) 1974
Ribeiro, Singh, Guestrin (bib0059) 2016
Harrell (bib0029) 2015
Baehrens, Schroeter, Harmeling, Kawanabe, Hansen, Müller (bib0003) 2010; 11
Krizhevsky, Sutskever, Hinton (bib0042) 2012
Bousquet, Boucheron, Lugosi (bib0012) 2004
Polson, Sokolov (bib0057) 2017; 79
Glaeser, Kominers, Luca, Naik (bib0024) 2018; 56
Anthony, Bartlett (bib0002) 2009
Hensher, Ton (bib0032) 2000; 36
Poggio, Kawaguchi, Liao, Miranda, Rosasco, Boix, Hidary, Mhaskar (bib0054) 2018
Bishop (bib0011) 2006
Celikoglu (bib0015) 2006; 44
Kingma, Ba (bib0040) 2014
Kotsiantis, Zaharakis, Pintelas (bib0041) 2007; 160
Poggio, Mhaskar, Rosasco, Miranda, Liao (bib0056) 2017; 14
Allahviranloo, Recker (bib0001) 2013; 58
Hillel, Bierlaire, Elshafie, Jin (bib0034) 2019
Paredes, Hemberg, O’Reilly, Zegras (bib0053) 2017
Fernández-Delgado, Cernadas, Barro, Amorim (bib0023) 2014; 15
Dong, Shao, Clarke, Nambisan (bib0021) 2018; 118
Tang, Xiong, Zhang (bib0065) 2015; 38
Soudry, Hoffer, Nacson, Gunasekar, Srebro (bib0063) 2018; 19
Hillel (bib0033) 2020
Xie, Lu, Parkany (bib0076) 2003
De Dios Ortuzar, Willumsen (bib0020) 2011
Ross, Doshi-Velez (bib0061) 2018
Wang, Mo, Zhao (bib0072) 2020; 112
Ben-Akiva, Lerman (bib0007) 1985; 9
Bartlett, Harvey, Liaw, Mehrabian (bib0004) 2017
Liao (10.1016/j.trb.2021.03.011_bib0045) 2018
Zegras (10.1016/j.trb.2021.03.011_bib0077) 2010; 47
Krizhevsky (10.1016/j.trb.2021.03.011_bib0042) 2012
McFadden (10.1016/j.trb.2021.03.011_bib0047) 1974
Hagenauer (10.1016/j.trb.2021.03.011_bib0028) 2017; 78
Doshi-Velez (10.1016/j.trb.2021.03.011_bib0022) 2017
Rolnick (10.1016/j.trb.2021.03.011_bib0060) 2017
Cantarella (10.1016/j.trb.2021.03.011_bib0014) 2005; 13
Poggio (10.1016/j.trb.2021.03.011_bib0055) 2018
Sontag (10.1016/j.trb.2021.03.011_bib0062) 1998; 168
Tang (10.1016/j.trb.2021.03.011_bib0065) 2015; 38
Vapnik (10.1016/j.trb.2021.03.011_bib0068) 1999; 10
Train (10.1016/j.trb.2021.03.011_bib0067) 2009
Ribeiro (10.1016/j.trb.2021.03.011_bib0059) 2016
Bartlett (10.1016/j.trb.2021.03.011_bib0004) 2017
Wainwright (10.1016/j.trb.2021.03.011_bib0071) 2019; 48
Wang (10.1016/j.trb.2021.03.011_bib0074) 2020
LeCun (10.1016/j.trb.2021.03.011_bib0043) 2015; 521
Hornik (10.1016/j.trb.2021.03.011_bib0037) 1991; 4
Fernández-Delgado (10.1016/j.trb.2021.03.011_bib0023) 2014; 15
Montavon (10.1016/j.trb.2021.03.011_bib0048) 2018; 73
Rao (10.1016/j.trb.2021.03.011_bib0058) 1998; 22
Vapnik (10.1016/j.trb.2021.03.011_bib0069) 2013
Train (10.1016/j.trb.2021.03.011_bib0066) 1980; 47
Hensher (10.1016/j.trb.2021.03.011_bib0032) 2000; 36
Omrani (10.1016/j.trb.2021.03.011_bib0052) 2015; 10
Harrell (10.1016/j.trb.2021.03.011_bib0029) 2015
Ross (10.1016/j.trb.2021.03.011_bib0061) 2018
Kingma (10.1016/j.trb.2021.03.011_bib0040) 2014
Hornik (10.1016/j.trb.2021.03.011_bib0038) 1989; 2
Wang (10.1016/j.trb.2021.03.011_bib0072) 2020; 112
Wu (10.1016/j.trb.2021.03.011_bib0075) 2018; 90
He (10.1016/j.trb.2021.03.011_bib0030) 2015
Mozolin (10.1016/j.trb.2021.03.011_bib0049) 2000; 34
Ledoux (10.1016/j.trb.2021.03.011_bib0044) 2013
Hillel (10.1016/j.trb.2021.03.011_bib0034) 2019
Glaeser (10.1016/j.trb.2021.03.011_bib0024) 2018; 56
Bousquet (10.1016/j.trb.2021.03.011_bib0012) 2004
Hinton (10.1016/j.trb.2021.03.011_bib0036) 2015
Wang (10.1016/j.trb.2021.03.011_bib0073) 2020; 118
De Dios Ortuzar (10.1016/j.trb.2021.03.011_bib0020) 2011
Gneiting (10.1016/j.trb.2021.03.011_bib0025) 2007; 102
Poggio (10.1016/j.trb.2021.03.011_bib0056) 2017; 14
Cheng (10.1016/j.trb.2021.03.011_bib0017) 2019; 14
Lipton (10.1016/j.trb.2021.03.011_bib0046) 2016
Xie (10.1016/j.trb.2021.03.011_bib0076) 2003
Dong (10.1016/j.trb.2021.03.011_bib0021) 2018; 118
Cervero (10.1016/j.trb.2021.03.011_bib0016) 1997; 2
Cybenko (10.1016/j.trb.2021.03.011_bib0019) 1989; 2
Allahviranloo (10.1016/j.trb.2021.03.011_bib0001) 2013; 58
Bentz (10.1016/j.trb.2021.03.011_bib0009) 2000; 19
Kotsiantis (10.1016/j.trb.2021.03.011_bib0041) 2007; 160
Ben-Akiva (10.1016/j.trb.2021.03.011_bib0007) 1985; 9
He (10.1016/j.trb.2021.03.011_bib0031) 2016
Bartlett (10.1016/j.trb.2021.03.011_bib0005) 2006; 101
Hillel (10.1016/j.trb.2021.03.011_bib0033) 2020
Szegedy (10.1016/j.trb.2021.03.011_bib0064) 2014
Bishop (10.1016/j.trb.2021.03.011_bib0011) 2006
Soudry (10.1016/j.trb.2021.03.011_bib0063) 2018; 19
Von Luxburg (10.1016/j.trb.2021.03.011_bib0070) 2011; 10
Zhou (10.1016/j.trb.2021.03.011_bib0078) 2014
Poggio (10.1016/j.trb.2021.03.011_bib0054) 2018
Paredes (10.1016/j.trb.2021.03.011_bib0053) 2017
Bertsimas (10.1016/j.trb.2021.03.011_bib0010) 2019
Hillel (10.1016/j.trb.2021.03.011_bib0035) 2020
Baehrens (10.1016/j.trb.2021.03.011_bib0003) 2010; 11
Cohen (10.1016/j.trb.2021.03.011_bib0018) 2016
Breiman (10.1016/j.trb.2021.03.011_bib0013) 2001; 16
Golowich (10.1016/j.trb.2021.03.011_bib0026) 2017
Polson (10.1016/j.trb.2021.03.011_bib0057) 2017; 79
Goodfellow (10.1016/j.trb.2021.03.011_bib0027) 2016; 1
Neyshabur (10.1016/j.trb.2021.03.011_bib0051) 2015
Celikoglu (10.1016/j.trb.2021.03.011_bib0015) 2006; 44
Mullainathan (10.1016/j.trb.2021.03.011_bib0050) 2017; 31
Bartlett (10.1016/j.trb.2021.03.011_bib0006) 2002; 3
Anthony (10.1016/j.trb.2021.03.011_bib0002) 2009
Bengio (10.1016/j.trb.2021.03.011_bib0008) 2013; 35
Karlaftis (10.1016/j.trb.2021.03.011_bib0039) 2011; 19
References_xml – volume: 47
  start-page: 1793
  year: 2010
  end-page: 1817
  ident: bib0077
  article-title: The built environment and motor vehicle ownership and use: evidence from santiago de chile
  publication-title: Urban Studies
– year: 2014
  ident: bib0040
  article-title: Adam: a method for stochastic optimization
  publication-title: arXiv preprint arXiv:1412.6980
– volume: 118
  start-page: 102701
  year: 2020
  ident: bib0073
  article-title: Deep neural networks for choice analysis: extracting complete economic information for interpretation
  publication-title: Transportation Research Part C: Emerging Technologies
– start-page: 100236
  year: 2020
  ident: bib0074
  article-title: Multitask learning deep neural networks to combine revealed and stated preference data
  publication-title: Journal of Choice Modelling
– year: 2019
  ident: bib0010
  article-title: The price of interpretability
  publication-title: Arxiv preprint
– year: 2014
  ident: bib0064
  article-title: Intriguing properties of neural networks
  publication-title: arXiv preprint arXiv:1312.6199
– volume: 79
  start-page: 1
  year: 2017
  end-page: 17
  ident: bib0057
  article-title: Deep learning for short-term traffic flow prediction
  publication-title: Transportation Research Part C: Emerging Technologies
– volume: 2
  start-page: 199
  year: 1997
  end-page: 219
  ident: bib0016
  article-title: Travel demand and the 3ds: density, diversity, and design
  publication-title: Transportation Research Part D: Transport and Environment
– year: 2018
  ident: bib0045
  article-title: When Is Handcrafting Not a Curse?
  publication-title: Technical Report
– year: 1974
  ident: bib0047
  article-title: Conditional Logit Analysis of Qualitative Choice Behavior
– start-page: 1376
  year: 2015
  end-page: 1401
  ident: bib0051
  article-title: Norm-based capacity control in neural networks
  publication-title: Conference on Learning Theory
– start-page: 50
  year: 2003
  end-page: 61
  ident: bib0076
  article-title: Work travel mode choice modeling with data mining: decision trees and neural networks
  publication-title: Transportation Research Record: Journal of the Transportation Research Board
– volume: 9
  year: 1985
  ident: bib0007
  article-title: Discrete choice analysis: Theory and application to travel demand
– volume: 14
  start-page: 1
  year: 2019
  end-page: 10
  ident: bib0017
  article-title: Applying a random forest method approach to model travel mode choice behavior
  publication-title: Travel behaviour and society
– year: 2006
  ident: bib0011
  article-title: Pattern recognition and machine learning
– year: 2011
  ident: bib0020
  article-title: Modelling transport
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: bib0043
  article-title: Deep learning
  publication-title: Nature
– volume: 16
  start-page: 199
  year: 2001
  end-page: 231
  ident: bib0013
  article-title: Statistical modeling: the two cultures (with comments and a rejoinder by the author)
  publication-title: Statistical science
– volume: 14
  start-page: 503
  year: 2017
  end-page: 519
  ident: bib0056
  article-title: Why and when can deep-but not shallow-networks avoid the curse of dimensionality: a review
  publication-title: Int. J. Autom. Comput.
– year: 2020
  ident: bib0033
  article-title: New Perspectives on the Performance of Machine Learning Classifiers for Mode Choice Prediction
– year: 2018
  ident: bib0061
  article-title: Improving the adversarial robustness and interpretability of deep neural networks by regularizing their input gradients
  publication-title: Thirty-second AAAI conference on artificial intelligence
– year: 2013
  ident: bib0069
  article-title: The nature of statistical learning theory
– volume: 2
  start-page: 359
  year: 1989
  end-page: 366
  ident: bib0038
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural networks
– start-page: 1026
  year: 2015
  end-page: 1034
  ident: bib0030
  article-title: Delving deep into rectifiers: Surpassing human-level performance on imagenet classification
  publication-title: Proceedings of the IEEE international conference on computer vision
– volume: 73
  start-page: 1
  year: 2018
  end-page: 15
  ident: bib0048
  article-title: Methods for interpreting and understanding deep neural networks
  publication-title: Digit. Signal Process.
– volume: 112
  start-page: 234
  year: 2020
  end-page: 251
  ident: bib0072
  article-title: Deep neural networks for choice analysis: architecture design with alternative-specific utility functions
  publication-title: Transportation Research Part C: Emerging Technologies
– volume: 19
  start-page: 2822
  year: 2018
  end-page: 2878
  ident: bib0063
  article-title: The implicit bias of gradient descent on separable data
  publication-title: The Journal of Machine Learning Research
– start-page: 1097
  year: 2012
  end-page: 1105
  ident: bib0042
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Advances in neural information processing systems
– volume: 22
  start-page: 485
  year: 1998
  end-page: 496
  ident: bib0058
  article-title: Another insight into artificial neural networks through behavioural analysis of access mode choice
  publication-title: Comput. Environ. Urban Syst.
– volume: 38
  start-page: 833
  year: 2015
  end-page: 850
  ident: bib0065
  article-title: Decision tree method for modeling travel mode switching in a dynamic behavioral process
  publication-title: Transportation Planning and Technology
– volume: 58
  start-page: 16
  year: 2013
  end-page: 43
  ident: bib0001
  article-title: Daily activity pattern recognition by using support vector machines with multiple classes
  publication-title: Transportation Research Part B: Methodological
– volume: 13
  start-page: 121
  year: 2005
  end-page: 155
  ident: bib0014
  article-title: Multilayer feedforward networks for transportation mode choice analysis: an analysis and a comparison with random utility models
  publication-title: Transportation Research Part C: Emerging Technologies
– volume: 78
  start-page: 273
  year: 2017
  end-page: 282
  ident: bib0028
  article-title: A comparative study of machine learning classifiers for modeling travel mode choice
  publication-title: Expert Syst. Appl.
– start-page: 780
  year: 2017
  end-page: 785
  ident: bib0053
  article-title: Machine learning or discrete choice models for car ownership demand estimation and prediction?
  publication-title: Models and Technologies for Intelligent Transportation Systems (MT-ITS), 2017 5th IEEE International Conference on
– year: 2019
  ident: bib0034
  article-title: Weak teachers: Assisted specification of discrete choice models using ensemble learning
  publication-title: 8th Symposium of the European Association for Research in Transportation, Budapest
– volume: 10
  start-page: 651
  year: 2011
  end-page: 706
  ident: bib0070
  article-title: Statistical Learning Theory: Models, Concepts, and Results
  publication-title: Handbook of the History of Logic
– volume: 118
  start-page: 407
  year: 2018
  end-page: 428
  ident: bib0021
  article-title: An innovative approach for traffic crash estimation and prediction on accommodating unobserved heterogeneities
  publication-title: Transportation research part B: methodological
– volume: 56
  start-page: 114
  year: 2018
  end-page: 137
  ident: bib0024
  article-title: Big data and big cities: the promises and limitations of improved measures of urban life
  publication-title: Econ. Inq.
– year: 2015
  ident: bib0036
  article-title: Distilling the knowledge in a neural network
  publication-title: arXiv preprint arXiv:1503.02531
– volume: 19
  start-page: 177
  year: 2000
  end-page: 200
  ident: bib0009
  article-title: Neural networks and the multinomial logit for brand choice modelling: a hybrid approach
  publication-title: J. Forecast.
– start-page: 169
  year: 2004
  end-page: 207
  ident: bib0012
  article-title: Introduction to Statistical Learning Theory
  publication-title: Advanced lectures on machine learning
– year: 2017
  ident: bib0022
  article-title: Towards a Rigorous Science of Interpretable Machine Learning
– year: 2017
  ident: bib0026
  article-title: Size-independent sample complexity of neural networks
  publication-title: arXiv preprint arXiv:1712.06541
– year: 2016
  ident: bib0046
  article-title: The mythos of model interpretability
  publication-title: arXiv preprint arXiv:1606.03490
– start-page: 770
  year: 2016
  end-page: 778
  ident: bib0031
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– year: 2018
  ident: bib0054
  article-title: Theory of deep learning iii: the non-overfitting puzzle
  publication-title: Technical Report
– volume: 36
  start-page: 155
  year: 2000
  end-page: 172
  ident: bib0032
  article-title: A comparison of the predictive potential of artificial neural networks and nested logit models for commuter mode choice
  publication-title: Transportation Research Part E: Logistics and Transportation Review
– volume: 2
  start-page: 303
  year: 1989
  end-page: 314
  ident: bib0019
  article-title: Approximation by superpositions of a sigmoidal function
  publication-title: Mathematics of control, signals and systems
– year: 2016
  ident: bib0018
  article-title: Measuring time preferences
  publication-title: Technical Report
– volume: 31
  start-page: 87
  year: 2017
  end-page: 106
  ident: bib0050
  article-title: Machine learning: an applied econometric approach
  publication-title: Journal of Economic Perspectives
– volume: 10
  start-page: 840
  year: 2015
  end-page: 849
  ident: bib0052
  article-title: Predicting travel mode of individuals by machine learning
  publication-title: Transp. Res. Procedia
– volume: 19
  start-page: 387
  year: 2011
  end-page: 399
  ident: bib0039
  article-title: Statistical methods versus neural networks in transportation research: differences, similarities and some insights
  publication-title: Transportation Research Part C: Emerging Technologies
– volume: 44
  start-page: 640
  year: 2006
  end-page: 658
  ident: bib0015
  article-title: Application of radial basis function and generalized regression neural networks in non-linear utility function specification for travel mode choice modelling
  publication-title: Math. Comput. Model.
– volume: 10
  start-page: 988
  year: 1999
  end-page: 999
  ident: bib0068
  article-title: An overview of statistical learning theory
  publication-title: IEEE Trans. Neural Networks
– volume: 102
  start-page: 359
  year: 2007
  end-page: 378
  ident: bib0025
  article-title: Strictly proper scoring rules, prediction, and estimation
  publication-title: J. Am. Stat. Assoc.
– year: 2009
  ident: bib0067
  article-title: Discrete choice methods with simulation
– volume: 101
  start-page: 138
  year: 2006
  end-page: 156
  ident: bib0005
  article-title: Convexity, classification, and risk bounds
  publication-title: J. Am. Stat. Assoc.
– start-page: 1135
  year: 2016
  end-page: 1144
  ident: bib0059
  article-title: Why should i trust you?: Explaining the predictions of any classifier
  publication-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– year: 2013
  ident: bib0044
  article-title: Probability in banach spaces: Isoperimetry and processes
– year: 2017
  ident: bib0060
  article-title: The power of deeper networks for expressing natural functions
  publication-title: arXiv preprint arXiv:1705.05502
– volume: 168
  start-page: 69
  year: 1998
  end-page: 96
  ident: bib0062
  article-title: Vc dimension of neural networks
  publication-title: NATO ASI Series F Computer and Systems Sciences
– volume: 1
  year: 2016
  ident: bib0027
  article-title: Deep learning
– year: 2017
  ident: bib0004
  article-title: Nearly-tight vc-dimension and pseudodimension bounds for piecewise linear neural networks
  publication-title: arXiv preprint arXiv:1703.02930
– volume: 4
  start-page: 251
  year: 1991
  end-page: 257
  ident: bib0037
  article-title: Approximation capabilities of multilayer feedforward networks
  publication-title: Neural networks
– start-page: 100221
  year: 2020
  ident: bib0035
  article-title: A systematic review of machine learning classification methodologies for modelling passenger mode choice
  publication-title: Journal of Choice Modelling
– volume: 48
  year: 2019
  ident: bib0071
  article-title: High-dimensional statistics: A non-asymptotic viewpoint
– year: 2009
  ident: bib0002
  article-title: Neural network learning: Theoretical foundations
– volume: 11
  start-page: 1803
  year: 2010
  end-page: 1831
  ident: bib0003
  article-title: How to explain individual classification decisions
  publication-title: Journal of Machine Learning Research
– volume: 34
  start-page: 53
  year: 2000
  end-page: 73
  ident: bib0049
  article-title: Trip distribution forecasting with multilayer perceptron neural networks: a critical evaluation
  publication-title: Transportation Research Part B: Methodological
– volume: 15
  start-page: 3133
  year: 2014
  end-page: 3181
  ident: bib0023
  article-title: Do we need hundreds of classifiers to solve real world classification problems
  publication-title: Journal of Machine Learning Research
– volume: 47
  start-page: 357
  year: 1980
  end-page: 370
  ident: bib0066
  article-title: A structured logit model of auto ownership and mode choice
  publication-title: Rev Econ Stud
– year: 2014
  ident: bib0078
  article-title: Object detectors emerge in deep scene cnns
  publication-title: arXiv preprint arXiv:1412.6856
– year: 2015
  ident: bib0029
  article-title: Regression modeling strategies: With applications to linear models, logistic and ordinal regression, and survival analysis
– year: 2018
  ident: bib0055
  article-title: Theory iiib: generalization in deep networks
  publication-title: arXiv preprint arXiv:1806.11379
– volume: 35
  start-page: 1798
  year: 2013
  end-page: 1828
  ident: bib0008
  article-title: Representation learning: a review and new perspectives
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 160
  start-page: 3
  year: 2007
  end-page: 24
  ident: bib0041
  article-title: Supervised machine learning: a review of classification techniques
  publication-title: Emerging artificial intelligence applications in computer engineering
– volume: 90
  start-page: 166
  year: 2018
  end-page: 180
  ident: bib0075
  article-title: A hybrid deep learning based traffic flow prediction method and its understanding
  publication-title: Transportation Research Part C: Emerging Technologies
– volume: 3
  start-page: 463
  year: 2002
  end-page: 482
  ident: bib0006
  article-title: Rademacher and gaussian complexities: risk bounds and structural results
  publication-title: Journal of Machine Learning Research
– volume: 56
  start-page: 114
  issue: 1
  year: 2018
  ident: 10.1016/j.trb.2021.03.011_bib0024
  article-title: Big data and big cities: the promises and limitations of improved measures of urban life
  publication-title: Econ. Inq.
  doi: 10.1111/ecin.12364
– start-page: 1026
  year: 2015
  ident: 10.1016/j.trb.2021.03.011_bib0030
  article-title: Delving deep into rectifiers: Surpassing human-level performance on imagenet classification
– year: 2019
  ident: 10.1016/j.trb.2021.03.011_bib0010
  article-title: The price of interpretability
  publication-title: Arxiv preprint
– volume: 79
  start-page: 1
  year: 2017
  ident: 10.1016/j.trb.2021.03.011_bib0057
  article-title: Deep learning for short-term traffic flow prediction
  publication-title: Transportation Research Part C: Emerging Technologies
  doi: 10.1016/j.trc.2017.02.024
– volume: 19
  start-page: 2822
  issue: 1
  year: 2018
  ident: 10.1016/j.trb.2021.03.011_bib0063
  article-title: The implicit bias of gradient descent on separable data
  publication-title: The Journal of Machine Learning Research
– volume: 2
  start-page: 303
  issue: 4
  year: 1989
  ident: 10.1016/j.trb.2021.03.011_bib0019
  article-title: Approximation by superpositions of a sigmoidal function
  publication-title: Mathematics of control, signals and systems
  doi: 10.1007/BF02551274
– volume: 16
  start-page: 199
  issue: 3
  year: 2001
  ident: 10.1016/j.trb.2021.03.011_bib0013
  article-title: Statistical modeling: the two cultures (with comments and a rejoinder by the author)
  publication-title: Statistical science
  doi: 10.1214/ss/1009213726
– volume: 2
  start-page: 199
  issue: 3
  year: 1997
  ident: 10.1016/j.trb.2021.03.011_bib0016
  article-title: Travel demand and the 3ds: density, diversity, and design
  publication-title: Transportation Research Part D: Transport and Environment
  doi: 10.1016/S1361-9209(97)00009-6
– start-page: 100221
  year: 2020
  ident: 10.1016/j.trb.2021.03.011_bib0035
  article-title: A systematic review of machine learning classification methodologies for modelling passenger mode choice
  publication-title: Journal of Choice Modelling
– volume: 10
  start-page: 988
  issue: 5
  year: 1999
  ident: 10.1016/j.trb.2021.03.011_bib0068
  article-title: An overview of statistical learning theory
  publication-title: IEEE Trans. Neural Networks
  doi: 10.1109/72.788640
– year: 2016
  ident: 10.1016/j.trb.2021.03.011_bib0018
  article-title: Measuring time preferences
– start-page: 770
  year: 2016
  ident: 10.1016/j.trb.2021.03.011_bib0031
  article-title: Deep residual learning for image recognition
– volume: 2
  start-page: 359
  issue: 5
  year: 1989
  ident: 10.1016/j.trb.2021.03.011_bib0038
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural networks
  doi: 10.1016/0893-6080(89)90020-8
– volume: 14
  start-page: 503
  issue: 5
  year: 2017
  ident: 10.1016/j.trb.2021.03.011_bib0056
  article-title: Why and when can deep-but not shallow-networks avoid the curse of dimensionality: a review
  publication-title: Int. J. Autom. Comput.
  doi: 10.1007/s11633-017-1054-2
– volume: 47
  start-page: 357
  issue: 2
  year: 1980
  ident: 10.1016/j.trb.2021.03.011_bib0066
  article-title: A structured logit model of auto ownership and mode choice
  publication-title: Rev Econ Stud
  doi: 10.2307/2296997
– volume: 11
  start-page: 1803
  issue: Jun
  year: 2010
  ident: 10.1016/j.trb.2021.03.011_bib0003
  article-title: How to explain individual classification decisions
  publication-title: Journal of Machine Learning Research
– volume: 13
  start-page: 121
  issue: 2
  year: 2005
  ident: 10.1016/j.trb.2021.03.011_bib0014
  article-title: Multilayer feedforward networks for transportation mode choice analysis: an analysis and a comparison with random utility models
  publication-title: Transportation Research Part C: Emerging Technologies
  doi: 10.1016/j.trc.2005.04.002
– volume: 36
  start-page: 155
  issue: 3
  year: 2000
  ident: 10.1016/j.trb.2021.03.011_bib0032
  article-title: A comparison of the predictive potential of artificial neural networks and nested logit models for commuter mode choice
  publication-title: Transportation Research Part E: Logistics and Transportation Review
  doi: 10.1016/S1366-5545(99)00030-7
– year: 2018
  ident: 10.1016/j.trb.2021.03.011_bib0061
  article-title: Improving the adversarial robustness and interpretability of deep neural networks by regularizing their input gradients
– year: 2017
  ident: 10.1016/j.trb.2021.03.011_bib0022
– year: 2018
  ident: 10.1016/j.trb.2021.03.011_bib0054
  article-title: Theory of deep learning iii: the non-overfitting puzzle
– volume: 48
  year: 2019
  ident: 10.1016/j.trb.2021.03.011_bib0071
– year: 2014
  ident: 10.1016/j.trb.2021.03.011_bib0040
  article-title: Adam: a method for stochastic optimization
  publication-title: arXiv preprint arXiv:1412.6980
– volume: 73
  start-page: 1
  year: 2018
  ident: 10.1016/j.trb.2021.03.011_bib0048
  article-title: Methods for interpreting and understanding deep neural networks
  publication-title: Digit. Signal Process.
  doi: 10.1016/j.dsp.2017.10.011
– volume: 44
  start-page: 640
  issue: 7
  year: 2006
  ident: 10.1016/j.trb.2021.03.011_bib0015
  article-title: Application of radial basis function and generalized regression neural networks in non-linear utility function specification for travel mode choice modelling
  publication-title: Math. Comput. Model.
  doi: 10.1016/j.mcm.2006.02.002
– year: 2020
  ident: 10.1016/j.trb.2021.03.011_bib0033
– volume: 19
  start-page: 387
  issue: 3
  year: 2011
  ident: 10.1016/j.trb.2021.03.011_bib0039
  article-title: Statistical methods versus neural networks in transportation research: differences, similarities and some insights
  publication-title: Transportation Research Part C: Emerging Technologies
  doi: 10.1016/j.trc.2010.10.004
– year: 2009
  ident: 10.1016/j.trb.2021.03.011_bib0067
– volume: 15
  start-page: 3133
  issue: 1
  year: 2014
  ident: 10.1016/j.trb.2021.03.011_bib0023
  article-title: Do we need hundreds of classifiers to solve real world classification problems
  publication-title: Journal of Machine Learning Research
– volume: 10
  start-page: 840
  year: 2015
  ident: 10.1016/j.trb.2021.03.011_bib0052
  article-title: Predicting travel mode of individuals by machine learning
  publication-title: Transp. Res. Procedia
  doi: 10.1016/j.trpro.2015.09.037
– volume: 38
  start-page: 833
  issue: 8
  year: 2015
  ident: 10.1016/j.trb.2021.03.011_bib0065
  article-title: Decision tree method for modeling travel mode switching in a dynamic behavioral process
  publication-title: Transportation Planning and Technology
  doi: 10.1080/03081060.2015.1079385
– volume: 90
  start-page: 166
  year: 2018
  ident: 10.1016/j.trb.2021.03.011_bib0075
  article-title: A hybrid deep learning based traffic flow prediction method and its understanding
  publication-title: Transportation Research Part C: Emerging Technologies
  doi: 10.1016/j.trc.2018.03.001
– year: 2006
  ident: 10.1016/j.trb.2021.03.011_bib0011
– start-page: 1135
  year: 2016
  ident: 10.1016/j.trb.2021.03.011_bib0059
  article-title: Why should i trust you?: Explaining the predictions of any classifier
– year: 2017
  ident: 10.1016/j.trb.2021.03.011_bib0026
  article-title: Size-independent sample complexity of neural networks
  publication-title: arXiv preprint arXiv:1712.06541
– start-page: 1097
  year: 2012
  ident: 10.1016/j.trb.2021.03.011_bib0042
  article-title: Imagenet classification with deep convolutional neural networks
– volume: 58
  start-page: 16
  year: 2013
  ident: 10.1016/j.trb.2021.03.011_bib0001
  article-title: Daily activity pattern recognition by using support vector machines with multiple classes
  publication-title: Transportation Research Part B: Methodological
  doi: 10.1016/j.trb.2013.09.008
– volume: 112
  start-page: 234
  year: 2020
  ident: 10.1016/j.trb.2021.03.011_bib0072
  article-title: Deep neural networks for choice analysis: architecture design with alternative-specific utility functions
  publication-title: Transportation Research Part C: Emerging Technologies
  doi: 10.1016/j.trc.2020.01.012
– start-page: 169
  year: 2004
  ident: 10.1016/j.trb.2021.03.011_bib0012
  article-title: Introduction to Statistical Learning Theory
– start-page: 100236
  year: 2020
  ident: 10.1016/j.trb.2021.03.011_bib0074
  article-title: Multitask learning deep neural networks to combine revealed and stated preference data
  publication-title: Journal of Choice Modelling
  doi: 10.1016/j.jocm.2020.100236
– year: 2015
  ident: 10.1016/j.trb.2021.03.011_bib0029
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10.1016/j.trb.2021.03.011_bib0043
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 10
  start-page: 651
  year: 2011
  ident: 10.1016/j.trb.2021.03.011_bib0070
  article-title: Statistical Learning Theory: Models, Concepts, and Results
  doi: 10.1016/B978-0-444-52936-7.50016-1
– volume: 4
  start-page: 251
  issue: 2
  year: 1991
  ident: 10.1016/j.trb.2021.03.011_bib0037
  article-title: Approximation capabilities of multilayer feedforward networks
  publication-title: Neural networks
  doi: 10.1016/0893-6080(91)90009-T
– year: 2009
  ident: 10.1016/j.trb.2021.03.011_bib0002
– year: 2016
  ident: 10.1016/j.trb.2021.03.011_bib0046
  article-title: The mythos of model interpretability
  publication-title: arXiv preprint arXiv:1606.03490
– volume: 19
  start-page: 177
  issue: 3
  year: 2000
  ident: 10.1016/j.trb.2021.03.011_bib0009
  article-title: Neural networks and the multinomial logit for brand choice modelling: a hybrid approach
  publication-title: J. Forecast.
  doi: 10.1002/(SICI)1099-131X(200004)19:3<177::AID-FOR738>3.0.CO;2-6
– volume: 118
  start-page: 407
  year: 2018
  ident: 10.1016/j.trb.2021.03.011_bib0021
  article-title: An innovative approach for traffic crash estimation and prediction on accommodating unobserved heterogeneities
  publication-title: Transportation research part B: methodological
  doi: 10.1016/j.trb.2018.10.020
– volume: 102
  start-page: 359
  issue: 477
  year: 2007
  ident: 10.1016/j.trb.2021.03.011_bib0025
  article-title: Strictly proper scoring rules, prediction, and estimation
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214506000001437
– year: 1974
  ident: 10.1016/j.trb.2021.03.011_bib0047
– volume: 101
  start-page: 138
  issue: 473
  year: 2006
  ident: 10.1016/j.trb.2021.03.011_bib0005
  article-title: Convexity, classification, and risk bounds
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214505000000907
– year: 2013
  ident: 10.1016/j.trb.2021.03.011_bib0044
– year: 2014
  ident: 10.1016/j.trb.2021.03.011_bib0064
  article-title: Intriguing properties of neural networks
  publication-title: arXiv preprint arXiv:1312.6199
– year: 2014
  ident: 10.1016/j.trb.2021.03.011_bib0078
  article-title: Object detectors emerge in deep scene cnns
  publication-title: arXiv preprint arXiv:1412.6856
– year: 2011
  ident: 10.1016/j.trb.2021.03.011_bib0020
– start-page: 1376
  year: 2015
  ident: 10.1016/j.trb.2021.03.011_bib0051
  article-title: Norm-based capacity control in neural networks
– volume: 47
  start-page: 1793
  issue: 8
  year: 2010
  ident: 10.1016/j.trb.2021.03.011_bib0077
  article-title: The built environment and motor vehicle ownership and use: evidence from santiago de chile
  publication-title: Urban Studies
  doi: 10.1177/0042098009356125
– year: 2013
  ident: 10.1016/j.trb.2021.03.011_bib0069
– volume: 78
  start-page: 273
  year: 2017
  ident: 10.1016/j.trb.2021.03.011_bib0028
  article-title: A comparative study of machine learning classifiers for modeling travel mode choice
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.01.057
– year: 2019
  ident: 10.1016/j.trb.2021.03.011_bib0034
  article-title: Weak teachers: Assisted specification of discrete choice models using ensemble learning
– volume: 34
  start-page: 53
  issue: 1
  year: 2000
  ident: 10.1016/j.trb.2021.03.011_bib0049
  article-title: Trip distribution forecasting with multilayer perceptron neural networks: a critical evaluation
  publication-title: Transportation Research Part B: Methodological
  doi: 10.1016/S0191-2615(99)00014-4
– year: 2018
  ident: 10.1016/j.trb.2021.03.011_bib0055
  article-title: Theory iiib: generalization in deep networks
  publication-title: arXiv preprint arXiv:1806.11379
– volume: 22
  start-page: 485
  issue: 5
  year: 1998
  ident: 10.1016/j.trb.2021.03.011_bib0058
  article-title: Another insight into artificial neural networks through behavioural analysis of access mode choice
  publication-title: Comput. Environ. Urban Syst.
  doi: 10.1016/S0198-9715(98)00036-2
– volume: 1
  year: 2016
  ident: 10.1016/j.trb.2021.03.011_bib0027
– volume: 168
  start-page: 69
  year: 1998
  ident: 10.1016/j.trb.2021.03.011_bib0062
  article-title: Vc dimension of neural networks
  publication-title: NATO ASI Series F Computer and Systems Sciences
– start-page: 780
  year: 2017
  ident: 10.1016/j.trb.2021.03.011_bib0053
  article-title: Machine learning or discrete choice models for car ownership demand estimation and prediction?
– year: 2018
  ident: 10.1016/j.trb.2021.03.011_bib0045
  article-title: When Is Handcrafting Not a Curse?
– volume: 14
  start-page: 1
  year: 2019
  ident: 10.1016/j.trb.2021.03.011_bib0017
  article-title: Applying a random forest method approach to model travel mode choice behavior
  publication-title: Travel behaviour and society
  doi: 10.1016/j.tbs.2018.09.002
– volume: 9
  year: 1985
  ident: 10.1016/j.trb.2021.03.011_bib0007
– volume: 160
  start-page: 3
  year: 2007
  ident: 10.1016/j.trb.2021.03.011_bib0041
  article-title: Supervised machine learning: a review of classification techniques
  publication-title: Emerging artificial intelligence applications in computer engineering
– volume: 3
  start-page: 463
  issue: Nov
  year: 2002
  ident: 10.1016/j.trb.2021.03.011_bib0006
  article-title: Rademacher and gaussian complexities: risk bounds and structural results
  publication-title: Journal of Machine Learning Research
– year: 2017
  ident: 10.1016/j.trb.2021.03.011_bib0060
  article-title: The power of deeper networks for expressing natural functions
  publication-title: arXiv preprint arXiv:1705.05502
– volume: 31
  start-page: 87
  issue: 2
  year: 2017
  ident: 10.1016/j.trb.2021.03.011_bib0050
  article-title: Machine learning: an applied econometric approach
  publication-title: Journal of Economic Perspectives
  doi: 10.1257/jep.31.2.87
– volume: 118
  start-page: 102701
  year: 2020
  ident: 10.1016/j.trb.2021.03.011_bib0073
  article-title: Deep neural networks for choice analysis: extracting complete economic information for interpretation
  publication-title: Transportation Research Part C: Emerging Technologies
  doi: 10.1016/j.trc.2020.102701
– volume: 35
  start-page: 1798
  issue: 8
  year: 2013
  ident: 10.1016/j.trb.2021.03.011_bib0008
  article-title: Representation learning: a review and new perspectives
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2013.50
– year: 2017
  ident: 10.1016/j.trb.2021.03.011_bib0004
  article-title: Nearly-tight vc-dimension and pseudodimension bounds for piecewise linear neural networks
  publication-title: arXiv preprint arXiv:1703.02930
– year: 2015
  ident: 10.1016/j.trb.2021.03.011_bib0036
  article-title: Distilling the knowledge in a neural network
  publication-title: arXiv preprint arXiv:1503.02531
– start-page: 50
  issue: 1854
  year: 2003
  ident: 10.1016/j.trb.2021.03.011_bib0076
  article-title: Work travel mode choice modeling with data mining: decision trees and neural networks
  publication-title: Transportation Research Record: Journal of the Transportation Research Board
  doi: 10.3141/1854-06
SSID ssj0003401
Score 2.5240865
Snippet •Used statistical learning theory to evaluate DNNs in choice analysis.•Operationalized DNN interpretability by using the choice probability functions.•Provided...
Although researchers increasingly use deep neural networks (DNN) to analyze individual choices, overfitting and interpretability issues remain obstacles in...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 60
SubjectTerms Approximation
Artificial neural networks
Choice learning
Choice modeling
Deep neural networks
Economic forecasting
Interpretability
Learning
Learning theory
Logit models
Machine learning
Mathematical analysis
Mathematical models
Neural networks
Predictions
Statistical analysis
Statistical learning theory
Statistical models
Trip surveys
Upper bounds
Title Deep neural networks for choice analysis: A statistical learning theory perspective
URI https://dx.doi.org/10.1016/j.trb.2021.03.011
https://www.proquest.com/docview/2544270465
Volume 148
WOSCitedRecordID wos000655548800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2367
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003401
  issn: 0191-2615
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfKhgR7QDBAbAzkB8QDVarGdr54K9AJUFVAdKjixXISW-1UZaXLpu2_4U_l_JVmRVTwwEsUOXES-X45n893v0PohcgSmYtQBCWYnwFjSRZkJKYBQKWMaEmVMCH_30bJeJxOp9nnTuenz4W5XCRVlV5dZcv_KmpoA2Hr1Nl_EHfzUGiAcxA6HEHscPwrwb-TctnVNJUw-JUN8jacC11QdHOTHmBpSGxOuk4oMlzNcPfCu0lMduO1pjRuJ2J6G7bhQ7fYcXRBsx5Yo6u6-0Y_19al9np17bR3vumZrGbibLP5C7z6er52rc59XWxRN-j7Dv0M8ObV7EK0XRakFVpl_Wg-l8arr3UAk3FxZmEA6zq71y2tWk4BQ5pr7obethSdTvPaqgS_TQjWN3Haq1d5T3-KYbR16v0G-fb4Ez8-GY34ZDidvFz-CHRdMr1_74q03EK7JIky0Ju7gw_D6cdmtqes72pe2q_2O-cmhnDjrX-yfTasAGPaTO6je25NggcWSw9QR1b76I5PWT_fR3st1sqH6KtGGLYIwx5hGBCGLcKwR9hrPMAtfGGPL2zxhVv4eoROjoeTt-8DV5sjKGiU1gEtaMmIEH0pRR6yiIqwSIhQpcwzJrMwETATkCKNJFOsVHFMipLIMM7BAFaJUvQx2qnOKvkEYVlEJC6FohGTLGcxrEiSuIDJRuVpqMr4APX9qPHCEdfr-ikL7iMUTzkMNNcDzfuUw0AfoFdNl6Vlbdl2M_Oi4M7stOYkBxBt63bkxcbd73_ONeEfSfosjg63X36K7q7_jCO0U68u5DN0u7gEmayeO5D9AnHUrUQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+neural+networks+for+choice+analysis%3A+A+statistical+learning+theory+perspective&rft.jtitle=Transportation+research.+Part+B%3A+methodological&rft.au=Wang%2C+Shenhao&rft.au=Wang%2C+Qingyi&rft.au=Bailey%2C+Nate&rft.au=Zhao%2C+Jinhua&rft.date=2021-06-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0191-2615&rft.eissn=1879-2367&rft.volume=148&rft.spage=60&rft_id=info:doi/10.1016%2Fj.trb.2021.03.011&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0191-2615&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0191-2615&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0191-2615&client=summon