Machine translation and its evaluation: a study

Machine translation (namely MT) has been one of the most popular fields in computational linguistics and Artificial Intelligence (AI). As one of the most promising approaches, MT can potentially break the language barrier of people from all over the world. Despite a number of studies in MT, there ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Artificial intelligence review Jg. 56; H. 9; S. 10137 - 10226
Hauptverfasser: Mondal, Subrota Kumar, Zhang, Haoxi, Kabir, H. M. Dipu, Ni, Kan, Dai, Hong-Ning
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Dordrecht Springer Netherlands 01.09.2023
Springer
Springer Nature B.V
Schlagworte:
ISSN:0269-2821, 1573-7462
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Machine translation (namely MT) has been one of the most popular fields in computational linguistics and Artificial Intelligence (AI). As one of the most promising approaches, MT can potentially break the language barrier of people from all over the world. Despite a number of studies in MT, there are few studies in summarizing and comparing MT methods. To this end, in this paper, we principally focus on presenting the two mainstream MT schemes: statistical machine translation (SMT) and neural machine translation (NMT), including their basic rationales and developments. Meanwhile, the detailed translation models are also presented, such as the word-based model, syntax-based model, and phrase-based model in statistical machine translation. Similarly, approaches in NMT, such as the recurrent neural network-based, attention mechanism-based, and transformer-based models are presented. Last but not least, the evaluation approaches also play an important role in helping developers to improve their methods better in MT. The prevailing machine translation evaluation methodologies are also presented in this article.
AbstractList Machine translation (namely MT) has been one of the most popular fields in computational linguistics and Artificial Intelligence (AI). As one of the most promising approaches, MT can potentially break the language barrier of people from all over the world. Despite a number of studies in MT, there are few studies in summarizing and comparing MT methods. To this end, in this paper, we principally focus on presenting the two mainstream MT schemes: statistical machine translation (SMT) and neural machine translation (NMT), including their basic rationales and developments. Meanwhile, the detailed translation models are also presented, such as the word-based model, syntax-based model, and phrase-based model in statistical machine translation. Similarly, approaches in NMT, such as the recurrent neural network-based, attention mechanism-based, and transformer-based models are presented. Last but not least, the evaluation approaches also play an important role in helping developers to improve their methods better in MT. The prevailing machine translation evaluation methodologies are also presented in this article.
Audience Academic
Author Mondal, Subrota Kumar
Kabir, H. M. Dipu
Dai, Hong-Ning
Zhang, Haoxi
Ni, Kan
Author_xml – sequence: 1
  givenname: Subrota Kumar
  orcidid: 0000-0002-0008-7797
  surname: Mondal
  fullname: Mondal, Subrota Kumar
  email: skmondal@must.edu.mo
  organization: School of Computer Science and Engineering, Macau University of Science and Technology
– sequence: 2
  givenname: Haoxi
  surname: Zhang
  fullname: Zhang, Haoxi
  organization: School of Computer Science and Engineering, Macau University of Science and Technology
– sequence: 3
  givenname: H. M. Dipu
  surname: Kabir
  fullname: Kabir, H. M. Dipu
  organization: Deakin University
– sequence: 4
  givenname: Kan
  surname: Ni
  fullname: Ni, Kan
  organization: School of Computer Science and Engineering, Macau University of Science and Technology
– sequence: 5
  givenname: Hong-Ning
  surname: Dai
  fullname: Dai, Hong-Ning
  organization: The Department of Computer Science, Hong Kong Baptist University
BookMark eNp9kF9LwzAUxYNMcJt-AZ8KPndLcps_9W0MncLEF30OWZrOjC6dSSvs2xtXQfBhBG4uh_NLOGeCRr71FqFbgmcEYzGPBBec5phCnrY02QUaEyYgF0kfoTGmvMyppOQKTWLcYYwZLWCM5i_afDhvsy5oHxvdudZn2leZ62Jmv3TTn6T7TGex66vjNbqsdRPtze89Re-PD2_Lp3z9unpeLta5ASa7nHDOhGZko62U2PLaAjOGscpyXEiuKWgAwoDUG2xKLnHNCZSkEryQZalLmKK74d1DaD97Gzu1a_vg05eKSpBSlBx4cs0G11Y3VjlftymGSaeye2dSRbVL-kIwIWghQCZADoAJbYzB1sq47pQwga5RBKufPtXQp0p9qlOfiiWU_kMPwe11OJ6HYIBiMvutDX8xzlDfSSCHCA
CitedBy_id crossref_primary_10_1057_s41599_025_04777_0
crossref_primary_10_1016_j_eswa_2024_125439
crossref_primary_10_3390_math12070997
crossref_primary_10_1016_j_ijpe_2023_109016
crossref_primary_10_1016_j_ssaho_2025_101484
crossref_primary_10_1177_14727978251321985
crossref_primary_10_3390_app14156848
crossref_primary_10_1371_journal_pone_0297183
crossref_primary_10_1038_s41598_025_11282_6
crossref_primary_10_30605_25409190_826
crossref_primary_10_1007_s11042_024_19551_8
crossref_primary_10_1007_s44163_025_00222_y
crossref_primary_10_3233_JCM_247538
Cites_doi 10.3115/v1/D14-1179
10.3109/09540261.2015.1106446
10.1109/COMPTELIX.2017.8003957
10.18653/v1/2022.findings-acl.263
10.1007/978-981-13-3083-4_3
10.1353/lan.2005.0105
10.1075/ts.00018.int
10.1007/s10590-020-09255-9
10.18653/v1/D15-1166
10.1162/tacl_a_00401
10.1007/978-3-642-24797-2_4
10.1007/978-3-540-30194-3_16
10.3115/1289189.1289273
10.3115/1073012.1073079
10.18653/v1/W17-4770
10.18653/v1/P17-1055
10.1017/S1351324920000364
10.3115/1599081.1599225
10.18653/v1/P19-1159
10.1080/0907676X.2018.1473452
10.18653/v1/2020.findings-emnlp.30
10.4236/ojml.2020.106046
10.1162/089120103321337421
10.3115/1073445.1073462
10.20943/01201702.5457
10.1111/j.2517-6161.1977.tb01600.x
10.1016/j.csl.2014.11.001
10.18653/v1/N19-1407
10.18653/v1/2021.acl-long.66
10.1145/3461702.3462624
10.1007/978-981-32-9748-7_4
10.7494/csci.2020.21.3.3701
10.4000/discours.8726
10.1109/79.543975
10.4000/books.aaccademia.8844
10.18653/v1/N16-1174
10.18653/v1/2021.emnlp-main.132
10.1007/978-3-642-30910-6_17
10.3115/991146.991191
10.1145/243199.243212
10.1145/1376616.1376746
10.3115/1073445.1073465
10.1007/978-3-540-76298-0_52
10.18653/v1/P16-1009
10.1556/084.2022.00108
10.1080/1369118X.2020.1776370
10.1007/s00521-021-05895-x
10.1007/s10676-021-09583-1
10.1007/s00521-019-04144-6
10.1109/78.650093
10.1016/S0167-6393(01)00041-3
10.18653/v1/E17-2038
10.18653/v1/2020.coling-main.397
10.18653/v1/D18-1045
10.18653/v1/P16-1162
10.3115/v1/N15-1125
10.3115/v1/P15-1002
10.18653/v1/2021.acl-short.24
10.18653/v1/P19-1425
10.1007/978-3-319-67190-1_33
10.1016/B978-0-12-741252-8.50010-8
10.1007/978-981-13-3083-4_7
10.1111/j.1467-8640.1991.tb00396.x
10.1007/s10590-008-9041-6
10.1007/978-3-319-46547-0_19
10.3115/1073083.1073135
10.3115/v1/W14-4012
10.1007/s10590-011-9090-0
10.18653/v1/P19-1355
10.18653/v1/P17-4012
10.1007/s44217-022-00002-1
10.3115/1557769.1557821
10.18653/v1/P19-1164
10.1038/507009a
10.1145/3360901.3364423
10.18653/v1/2020.acl-main.529
10.18653/v1/P18-2053
10.1007/s10590-014-9153-0
10.1017/CBO9780511815829
10.3115/v1/P15-1001
10.1007/s43681-021-00043-6
10.1609/aaai.v31i1.10974
10.18653/v1/D19-5610
10.18653/v1/2021.emnlp-main.129
10.3115/1118037.1118045
10.1007/978-3-642-00296-0_5
10.1145/3287624.3287717
10.1162/tacl_a_00105
10.1109/IJCNN.2001.939589
10.3115/992383.992448
10.1145/3531146.3533244
10.1515/comp-2019-0019
10.1109/72.159058
10.1364/OE.416672
10.1007/978-3-030-88615-8_7
10.3115/1218955.1219032
10.24963/ijcai.2021/525
10.3115/992730.992809
10.1075/ts.00021.can
10.24963/ijcai.2020/559
10.18653/v1/D16-1025
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
COPYRIGHT 2023 Springer
Copyright Springer Nature B.V. Sep 2023
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: COPYRIGHT 2023 Springer
– notice: Copyright Springer Nature B.V. Sep 2023
DBID AAYXX
CITATION
3V.
7SC
7T9
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ALSLI
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
CNYFK
DWQXO
E3H
F2A
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M1O
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PRQQA
PSYQQ
Q9U
DOI 10.1007/s10462-023-10423-5
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Linguistics and Language Behavior Abstracts (LLBA)
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Social Science Premium Collection
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
Library & Information Science Collection
ProQuest Central
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM global
Computing Database
Library Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Social Sciences
One Psychology
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
Library and Information Science Abstracts (LISA)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
Library & Information Science Collection
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
Business Premium Collection
Social Science Premium Collection
ABI/INFORM Global
ProQuest One Academic Eastern Edition
Linguistics and Language Behavior Abstracts (LLBA)
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Library Science
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ProQuest One Social Sciences
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ProQuest Business Collection (Alumni Edition)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7462
EndPage 10226
ExternalDocumentID A757724738
10_1007_s10462_023_10423_5
GrantInformation_xml – fundername: Macau University of Science and Technology
  grantid: FRG-22-020-FI
  funderid: http://dx.doi.org/10.13039/501100015260
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23N
28-
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6J9
6NX
77K
7WY
8AO
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AAHNG
AAIAL
AAJKR
AAJSJ
AAKKN
AANZL
AAOBN
AARHV
AARTL
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABEEZ
ABFTD
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMOR
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACACY
ACBXY
ACGFS
ACHSB
ACHXU
ACIHN
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACREN
ACSNA
ACULB
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFGXO
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
C24
C6C
CAG
CCPQU
CNYFK
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M1O
M4Y
MA-
MK~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSYQQ
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~A9
~EX
77I
AAFWJ
AASML
AAYXX
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFFHD
AFHIU
AGQPQ
AHPBZ
AHWEU
AIXLP
AYFIA
CITATION
ICD
PHGZM
PHGZT
PQGLB
PRQQA
7SC
7T9
7XB
8AL
8FD
8FK
E3H
F2A
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c358t-16657a51bae880e6fe35cc55de60486a23a331531fb0c9680f61391d764899a93
IEDL.DBID 7WY
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000937654900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0269-2821
IngestDate Sat Nov 08 02:34:13 EST 2025
Sat Nov 29 10:28:19 EST 2025
Tue Nov 18 22:07:49 EST 2025
Sat Nov 29 02:43:27 EST 2025
Fri Feb 21 02:41:56 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Evaluation methods
Computational linguistics
Statistical machine translation
Neural machine translation
Natural Language Processing
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-16657a51bae880e6fe35cc55de60486a23a331531fb0c9680f61391d764899a93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0008-7797
PQID 2838879636
PQPubID 36790
PageCount 90
ParticipantIDs proquest_journals_2838879636
gale_infotracacademiconefile_A757724738
crossref_citationtrail_10_1007_s10462_023_10423_5
crossref_primary_10_1007_s10462_023_10423_5
springer_journals_10_1007_s10462_023_10423_5
PublicationCentury 2000
PublicationDate 20230900
2023-09-00
20230901
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 9
  year: 2023
  text: 20230900
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle An International Science and Engineering Journal
PublicationTitle The Artificial intelligence review
PublicationTitleAbbrev Artif Intell Rev
PublicationYear 2023
Publisher Springer Netherlands
Springer
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer
– name: Springer Nature B.V
References ShieberSMSchabesYGeneration and synchronous tree-adjoining grammarsComputational Intelligence199174220228
Koehn P, Och FJ, Marcu D (2003) Statistical phrase-based translation. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology-Volume 1, Association for Computational Linguistics, pp 48–54
ÁlvaroRochaAdeliHReisLPCostanzoSTrends and Advances in Information Systems and Technologies2018Springer
Abid A, Farooqi M, Zou J (2021) Persistent anti-muslim bias in large language models. In: Proceedings of the 2021 AAAI/ACM conference on AI, Ethics, and Society, pp 298–306
ZakirHMNagoorMSA Brief Study of Challenges in Machine TranslationInt J Comput Sci Issues (IJCSI)201714254
Yang B, Wang L, Wong DF, Chao LS, Tu Z (2019) Convolutional Self-Attention Networks. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp 4040–4045
Yun Huang QL Yang Liu (2008) Introduction on machine translation evaluation
Karim R (2019) Illustrated attention. https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3. Accessed 08 Apr 2022
Kaljahi RSZ, Rubino R, Roturier J, Foster J, Park BB (2012) A detailed analysis of phrase-based and syntax-based machine translation: The search for systematic differences. In: Proceedings of AMTA
Koehn P, Chiang D (2019) Special interest group of machine translation. http://www.sigmt.org. Accessed 08 Apr 2022
SomersHRound-trip translation: What is it good for?Proceedings of the Australasian Language Technology Workshop20052005127133
Shieber SM, Schabes Y (1990) Synchronous tree-adjoining grammars. In: Proceedings of the 13th conference on Computational linguistics-Volume 3, pp 253–258
Bapna A, Firat O, Wang P, Macherey W, Cheng Y, Cao Y (2022) Multilingual Mix: Example Interpolation Improves Multilingual Neural Machine Translation. In: ACL 2022
United Nations Parallel Corpus (2022) https://conferences.unite.un.org/uncorpus. Accessed 30 Sep 2022
Stanovsky G, Smith NA, Zettlemoyer L (2019) Evaluating gender bias in machine translation. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Association for Computational Linguistics, Florence, Italy, pp 1679–1684, https://doi.org/10.18653/v1/P19-1164, https://aclanthology.org/P19-1164
Mueller V (2022) An introduction to synchronous grammars. Tutorial https://medium.com/towards-data-science/attention-please-85bd0abac41. Accessed 05 Apr 2022
VandeghinsteVMartensSKotzéGTiedemannJVan den BogaertJDe SmetKVan EyndeFVan NoordGParse and corpus-based machine translationEssential Speech and Language Technology for Dutch2013Berlin, HeidelbergSpringer305319
Meng F, Lu Z, Li H, Liu Q (2016) Interactive attention for neural machine translation. arXiv preprint arXiv:1610.05011
Wikimatrix (2022) Mining 135m parallel sentences in 1620 language pairs from wikipedia. https://github.com/facebookresearch/LASER/tree/main/tasks/WikiMatrix. Accessed 30 Sep 2022
Cheng Y, Jiang L, Macherey W, Eisenstein J (2020) AdvAug: Robust Adversarial Augmentation for Neural Machine Translation. In: ACL, https://arxiv.org/abs/2006.11834
Esplà-Gomis M, Forcada ML, Ramírez-Sánchez G, Hoang H (2019) ParaCrawl: Web-scale parallel corpora for the languages of the EU. In: Proceedings of Machine Translation Summit XVII: Translator, Project and User Tracks, pp 118–119
Chiang D, Knight K (2006) An introduction to synchronous grammars. Tutorial https://www3.nd.edu/~dchiang/papers/synchtut.pdf. Accessed 4 Jan 2022
Staudemeyer RC, Morris ER (2019) Understanding LSTM–a tutorial into long short-term memory recurrent neural networks. arXiv preprint arXiv:1909.09586
WuHWangHPivot language approach for phrase-based statistical machine translationMachine Translation2007213165181
Colah (2015) Understanding LSTM networks. http://colah.github.io/posts/2015-08-Understanding-LSTMs/. Accessed 08 Apr 2022
KlakowDPetersJTesting the correlation of word error rate and perplexitySpeech Communication2002381–219281005.68806
LiYXiongDZhangMA survey of neural machine translationChinese Journal of Computers20181227343931919
Jian Zhang MZ Ji Wu (2003) The improvement of automatic machine translation evaluation. J Chin Inf Process 17(6):2, http://jcip.cipsc.org.cn/CN/abstract/article_1823.shtml
Sennrich R, Haddow B, Birch A (2015) Improving neural machine translation models with monolingual data. arXiv preprint arXiv:1511.06709
WahlerMEA word is worth a thousand words: Legal implications of relying on machine translation technologyStetson L Rev201848109
Rebele T, Suchanek F, Hoffart J, Biega J, Kuzey E, Weikum G (2016) YAGO: A multilingual knowledge base from wikipedia, wordnet, and geonames. In: International semantic web conference, Springer, pp 177–185
DempsterAPLairdNMRubinDBMaximum likelihood from incomplete data via the EM algorithmJournal of the Royal Statistical Society: Series B (Methodological)19773911225015370364.62022
Rescigno AA, Vanmassenhove E, Monti J, Way A (2020) A case study of natural gender phenomena in translation. A comparison of Google Translate, Bing Microsoft Translator and DeepL for English to Italian, French and Spanish. In: CLiC-it
BrownPFPietraVJDPietraSADMercerRLThe mathematics of statistical machine translation: Parameter estimationComputational linguistics1993192263311
Ullmann S (2022) Gender bias in machine translation systems. In: Artificial Intelligence and Its Discontents, Springer, pp 123–144
Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I (2017) Attention is all you need. Adv Neural Inf Process Syst 30:1
Ahmed A, Hanneman G (2005) Syntax-based statistical machine translation: a review. Comput Linguist 1:1
PapadimitriouCHComputational complexity2003John Wiley and Sons Ltd0557.68033
Bender EM (2019) A typology of ethical risks in language technology with an eye towards where transparent documentation can help. In: Future of artificial intelligence: language, ethics, technology workshop
Koehn P (2009) Statistical Machine Translation Lecture 5 Syntax-Based Models. Cambridge University Press, Cambridge. Accessed 08 Apr 2022
SchusterMPaliwalKKBidirectional recurrent neural networksIEEE Transactions on Signal Processing1997451126732681
IslamMAnikMHoqueSIslamATowards achieving a delicate blending between rule-based translator and neural machine translatorNeural Computing and Applications202133181214112167
Bouchard G (2007) Efficient bounds for the softmax function and applications to approximate inference in hybrid models. In: NIPS 2007 workshop for approximate Bayesian inference in continuous/hybrid systems
Luong MT, Sutskever I, Le QV, Vinyals O, Zaremba W (2014) Addressing the rare word problem in neural machine translation. arXiv preprint arXiv:1410.8206
Tixier AJP (2018) Notes on deep learning for nlp. arXiv preprint arXiv:1808.09772
ACL (2022) ACL 2014 NINTH WORKSHOP ON STATISTICAL MACHINE TRANSLATION. Available at https://www.statmt.org/wmt14/translation-task.html. Accessed 05 Apr 2022
Ko WJ, El-Kishky A, Renduchintala A, Chaudhary V, Goyal N, Guzmán F, Fung P, Koehn P, Diab M (2021) Adapting high-resource NMT models to translate low-resource related languages without parallel data. arXiv preprint arXiv:2105.15071
Koehn P (2009) Chapter 4 Word-based models - Statistical Machine Translation. Cambridge University Press, Cambridge. Accessed 08 Apr 2022
Dabre R, Cromieres F, Kurohashi S, Bhattacharyya P (2015) Leveraging small multilingual corpora for smt using many pivot languages. In: Proceedings of the 2015 conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 1192–1202
Cui Y, Chen Z, Wei S, Wang S, Liu T, Hu G (2016) Attention-over-attention neural networks for reading comprehension. arXiv preprint arXiv:1607.04423
PratesMOAvelarPHLambLCAssessing gender bias in machine translation: a case study with google translateNeural Computing and Applications2020321063636381
Ravikumar D, Kodge S, Garg I, Roy K (2020) Exploring Vicinal Risk Minimization for Lightweight Out-of-Distribution Detection. arXiv preprint arXiv:2012.08398
FärberMEllBMenneCRettingerAA comparative survey of dbpedia, freebase, opencyc, wikidata, and yagoSemantic Web Journal20151115
Gehring J, Auli M, Grangier D, Yarats D, Dauphin YN (2017) Convolutional sequence to sequence learning. In: Proceedings of the 34th International Conference on Machine Learning-Volume 70, JMLR. org, pp 1243–1252
Wu Y, Schuster M, Chen Z, Le QV, Norouzi M, Macherey W, Krikun M, Cao Y, Gao Q, Macherey K et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:1609.08144
Lin CY (2004) Rouge: A package for automatic evaluation of summaries. In: Text summarization branches out, pp 74–81
Bick E (2007) Dan2eng: wide-coverage Danish-English machine translation. In: Proceedings of Machine Translation Summit XI: Papers
Costa-JussaMRFonollosaJALatest trends in hybrid machine translation and its applicationsComput Speech Lang2015321310
PalSKMitraSMultilayer perceptron, fuzzy sets, and classificationIEEE Transactions on neural networks199235683697
Moon J, Cho H, Park EL (2020) Revisiting round-trip translation for quality estimation. arXiv preprint arXiv:2004.13937
Rocktäschel T, Grefenstette E, Hermann KM, Kočiskỳ T, Blunsom P (2015) Reasoning about entailment with neural attention. arXiv preprint arXiv:1509.06664
Common Crawl corpus (2022) https://commoncrawl.org/. Accessed 30 Sep 2022
Ramnath S, Johnson M, Gupta A, Raghuveer A (2021) HintedBT: Augmenting Back-Translation with Quality and Transliteration Hints. In: EMNLP 2021
AhmadniaBSerranoJHaffariGPersian-Spanish low-resource statistical machine translation through English as pivot languageProceedings of the International Conference Recent Advances in Natural Language Processing, RANLP201720172430
Steinberger R, Pouliquen B, Widige
10423_CR159
FJ Och (10423_CR121) 2003; 29
J Zhou (10423_CR201) 2016; 4
10423_CR154
10423_CR157
10423_CR156
10423_CR151
10423_CR153
ME Wahler (10423_CR179) 2018; 48
10423_CR152
S Wang (10423_CR180) 2005; 81
10423_CR147
10423_CR144
10423_CR143
10423_CR146
10423_CR140
10423_CR142
Y Li (10423_CR98) 2018; 12
10423_CR177
10423_CR173
A Sakamoto (10423_CR145) 2019; 27
10423_CR175
10423_CR174
10423_CR171
10423_CR170
SM Shieber (10423_CR158) 1991; 7
L Schiebinger (10423_CR149) 2014; 507
C Richards (10423_CR141) 2016; 28
10423_CR169
10423_CR166
10423_CR165
10423_CR168
O Furuse (10423_CR54) 1992; 1992
10423_CR167
10423_CR162
10423_CR164
10423_CR163
B Ahmadnia (10423_CR8) 2020; 21
10423_CR160
LN Vieira (10423_CR178) 2021; 24
D Wu (10423_CR188) 1997; 23
B Ahmadnia (10423_CR7) 2019; 17
G Labaka (10423_CR95) 2014; 28
10423_CR99
10423_CR9
10423_CR199
10423_CR198
10423_CR92
10423_CR195
10423_CR91
10423_CR194
10423_CR94
10423_CR93
10423_CR196
10423_CR96
10423_CR191
10423_CR190
10423_CR193
10423_CR97
AP Dempster (10423_CR46) 1977; 39
10423_CR90
10423_CR89
10423_CR88
B Ahmadnia (10423_CR5) 2019; 9
10423_CR187
10423_CR184
10423_CR80
10423_CR183
10423_CR186
10423_CR82
10423_CR185
H Wu (10423_CR189) 2007; 21
10423_CR85
10423_CR84
10423_CR87
10423_CR182
10423_CR181
10423_CR2
10423_CR3
10423_CR1
10423_CR4
J Liu (10423_CR103) 2020; 10
10423_CR78
10423_CR77
10423_CR79
B Savoldi (10423_CR148) 2021; 9
M Färber (10423_CR55) 2015; 1
10423_CR70
10423_CR74
10423_CR73
10423_CR76
10423_CR75
X Liu (10423_CR105) 2021; 29
PF Brown (10423_CR23) 1993; 19
10423_CR69
10423_CR68
S Sharma (10423_CR155) 2017; 6
10423_CR61
10423_CR60
10423_CR63
10423_CR62
N Casas (10423_CR26) 2021; 27
10423_CR65
M Islam (10423_CR72) 2021; 33
10423_CR64
Rocha Álvaro (10423_CR10) 2018
M Tomalin (10423_CR172) 2021; 23
10423_CR56
10423_CR58
10423_CR57
10423_CR59
ML Forcada (10423_CR52) 2011; 25
10423_CR50
10423_CR51
DC Hill (10423_CR66) 2022; 1
10423_CR53
I Horváth (10423_CR67) 2022; 23
CH Papadimitriou (10423_CR128) 2003
10423_CR45
10423_CR44
10423_CR47
10423_CR49
10423_CR48
10423_CR41
10423_CR40
10423_CR43
10423_CR42
MR Costa-Jussa (10423_CR39) 2015; 32
MO Prates (10423_CR133) 2020; 32
10423_CR34
10423_CR33
10423_CR36
10423_CR35
10423_CR38
10423_CR37
10423_CR30
10423_CR32
10423_CR31
SK Pal (10423_CR127) 1992; 3
M Yamada (10423_CR192) 2019; 31
10423_CR203
10423_CR22
MP Marcus (10423_CR111) 1993; 19
10423_CR202
10423_CR24
10423_CR204
10423_CR27
10423_CR29
10423_CR28
10423_CR200
10423_CR21
10423_CR20
P Koehn (10423_CR86) 2009
TK Moon (10423_CR114) 1996; 13
10423_CR19
10423_CR12
10423_CR115
10423_CR11
10423_CR14
10423_CR117
10423_CR13
10423_CR16
D Klakow (10423_CR83) 2002; 38
10423_CR110
10423_CR18
10423_CR113
10423_CR17
10423_CR112
J Moorkens (10423_CR116) 2022; 18
R Barzilay (10423_CR15) 2004
10423_CR108
10423_CR107
10423_CR109
10423_CR104
10423_CR106
10423_CR100
10423_CR102
10423_CR101
H Somers (10423_CR161) 2005; 2005
D Kenny (10423_CR81) 2020; 9
HM Zakir (10423_CR197) 2017; 14
B Ahmadnia (10423_CR6) 2017; 2017
10423_CR137
10423_CR136
10423_CR139
10423_CR138
10423_CR132
10423_CR134
10423_CR131
JE Ortega (10423_CR126) 2020; 34
10423_CR130
M Schuster (10423_CR150) 1997; 45
C Canfora (10423_CR25) 2020; 9
10423_CR129
10423_CR125
10423_CR122
10423_CR124
10423_CR123
10423_CR120
V Vandeghinste (10423_CR176) 2013
C Raffel (10423_CR135) 2020; 21
10423_CR119
10423_CR118
A Imankulova (10423_CR71) 2019; 19
References_xml – reference: Och FJ, Tillmann C, Ney H (1999) Improved alignment models for statistical machine translation. In: 1999 Joint SIGDAT Conference on Empirical Methods in Natural Language Processing and Very Large Corpora
– reference: Sun T, Gaut A, Tang S, Huang Y, ElSherief M, Zhao J, Mirza D, Belding E, Chang KW, Wang WY (2019) Mitigating gender bias in natural language processing: literature review. In: Proceedings of the 57th annual meeting of the Association for Computational Linguistics, pp 1630–1640
– reference: PalSKMitraSMultilayer perceptron, fuzzy sets, and classificationIEEE Transactions on neural networks199235683697
– reference: Cheng Y, Jiang L, Macherey W, Eisenstein J (2020) AdvAug: Robust Adversarial Augmentation for Neural Machine Translation. In: ACL, https://arxiv.org/abs/2006.11834
– reference: Koehn P (2009) Statistical Machine Translation Lecture 6 Decoding. Cambridge University Press, Cambridge. Accessed 08 Apr 2022
– reference: SakamotoAUnintended consequences of translation technologies: from project managers’ perspectivesPerspectives20192715873
– reference: Hecht-Nielsen R (1992) Theory of the backpropagation neural network. In: Neural networks for perception, Elsevier, pp 65–93
– reference: Jehl L, Simianer P, HIrschler J, Riezler S (2015) The Heidelberg university English-German translation system for IWSLT 2015. In: Proceedings of the 12th International Workshop on Spoken Language Translation: Evaluation Campaign
– reference: Sara Stymne GT (2022) Phrase Based Machine Translation. Tutorial https://cl.lingfil.uu.se/kurs/MT19/slides/pbsmt.pdf. Accessed 05 Apr 2022
– reference: Cho K, Van Merriënboer B, Bahdanau D, Bengio Y (2014b) On the properties of neural machine translation: encoder-decoder approaches. arXiv preprint arXiv:1409.1259
– reference: Liu CH, Silva CC, Wang L, Way A (2018) Pivot machine translation using chinese as pivot language. In: China workshop on machine translation. Springer, Berlin. pp 74–85
– reference: Saunders D, Sallis R, Byrne B (2020) Neural machine translation doesn’t translate gender coreference right unless you make it. In: Proceedings of the second workshop on gender bias in natural language processing, pp 35–43
– reference: SavoldiBGaidoMBentivogliLNegriMTurchiMGender bias in machine translationTransactions of the Association for Computational Linguistics20219845874
– reference: Cui Y, Chen Z, Wei S, Wang S, Liu T, Hu G (2016) Attention-over-attention neural networks for reading comprehension. arXiv preprint arXiv:1607.04423
– reference: AhmadniaBDorrBJKordjamshidiPKnowledge graphs effectiveness in neural machine translation improvementComputer Science202021299318
– reference: Council NR (1416) Language and Machines: Computers in Translation and Linguistics; a Report. National Research Council, https://books.google.com/books?hl=zh-CN &lr= &id=Q0ErAAAAYAAJ &oi=fnd &pg=PA1 &dq=Languages+and+machines:+computers+in+translation+and+linguistics &ots=NgytafcXa- &sig=Hc733OYAAT89yd4U-3xLdh77gEM#v=onepage &q &f=false. Accessed 08 Apr 2022
– reference: ShieberSMSchabesYGeneration and synchronous tree-adjoining grammarsComputational Intelligence199174220228
– reference: Cho K, Van Merriënboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H, Bengio Y (2014a) Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078
– reference: Lu Y, Zhang J, Zong C (2018) Exploiting knowledge graph in neural machine translation. In: China workshop on machine translation. Springer, Berlin. pp 27–38
– reference: Och FJ, Ueffing N, Ney H (2001) An efficient A* search algorithm for statistical machine translation. In: Proceedings of the workshop on Data-driven methods in machine translation-Volume 14, Association for Computational Linguistics, pp 1–8
– reference: Toma P (1977) Systran as a multilingual machine translation system. In: Proceedings of the Third European Congress on Information Systems and Networks, overcoming the language barrier, pp 569–581
– reference: Yang B, Wang L, Wong DF, Chao LS, Tu Z (2019) Convolutional Self-Attention Networks. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp 4040–4045
– reference: Nyberg EH, Mitamura T (1992) The KANT system: Fast, accurate, high-quality translation in practical domains. In: Proceedings of the 14th conference on Computational linguistics-Volume 3, Association for Computational Linguistics, pp 1069–1073
– reference: Wiki (2019) Automatic Language Processing Advisory Committee. https://en.wikipedia.org/wiki/ALPAC. Accessed 08 Apr 2022
– reference: Och FJ, Gildea D, Khudanpur S, Sarkar A, Yamada K, Fraser A, Kumar S, Shen L, Smith D, Eng K et al (2003) Syntax for statistical machine translation. In: Johns Hopkins University 2003 Summer Workshop on Language Engineering, Center for Language and Speech Processing, Baltimore, MD, Tech. Rep
– reference: MoorkensJEthics and machine translationMachine translation for everyone: Empowering users in the age of artificial intelligence202218121
– reference: Freitag M, Torres DV, Grangier D, Cherry C, Foster G (2022) A Natural Diet: Towards Improving Naturalness of Machine Translation Output. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics, Online
– reference: Bouchard G (2007) Efficient bounds for the softmax function and applications to approximate inference in hybrid models. In: NIPS 2007 workshop for approximate Bayesian inference in continuous/hybrid systems
– reference: Lin CY, Hovy E (2003) Automatic evaluation of summaries using n-gram co-occurrence statistics. In: Proceedings of the 2003 human language technology conference of the North American chapter of the association for computational linguistics, pp 150–157
– reference: van Wynsberghe A (2021) Sustainable AI: AI for sustainability and the sustainability of AI. AI Ethics (2021). https://doi.org/10.1007/s43681-021-00043-6
– reference: Zhang D, Li M, Li CH, Zhou M (2007) Phrase reordering model integrating syntactic knowledge for SMT. In: Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL), pp 533–540
– reference: Ziemski M, Junczys-Dowmunt M, Pouliquen B (2016) The united nations parallel corpus v1. 0. In: Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16), pp 3530–3534
– reference: Tixier AJP (2018) Notes on deep learning for nlp. arXiv preprint arXiv:1808.09772
– reference: Snover M, Dorr B, Schwartz R, Micciulla L, Makhoul J (2006) A study of translation edit rate with targeted human annotation. In: Proceedings of association for machine translation in the Americas, vol 200
– reference: SomersHRound-trip translation: What is it good for?Proceedings of the Australasian Language Technology Workshop20052005127133
– reference: Steinberger R, Pouliquen B, Widiger A, Ignat C, Erjavec T, Tufis D, Varga D (2006) The JRC-Acquis: A multilingual aligned parallel corpus with 20+ languages. arXiv preprint arXiv:cs/0609058
– reference: Wiki (2019) Long-short term memory. https://en.wikipedia.org/wiki/Long_short-term_memory. Accessed 08 Apr 2022
– reference: Cheng Y (2019) Joint training for pivot-based neural machine translation. In: Joint Training for Neural Machine Translation, Springer, pp 41–54
– reference: ImankulovaASatoTKomachiMFiltered pseudo-parallel corpus improves low-resource neural machine translationACM Transactions on Asian and Low-Resource Language Information Processing (TALLIP)2019192116
– reference: Besacier L, Blanchon H (2017) Comparing statistical machine translation and neural machine translation performances. https://evaluerlata.hypotheses.org/files/2017/07/Laurent-Besacier-NMTvsSMT.pdf, laboratoire LIG, Université Grenoble Alpes, France
– reference: Habash N, Zalmout N, Taji D, Hoang H, Alzate M (2017) A Parallel Corpus for Evaluating Machine Translation between Arabic and European Languages. In: Proceedings of the 15th conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers, Association for Computational Linguistics, Valencia, Spain, pp 235–241. https://aclanthology.org/E17-2038
– reference: Lin CY (2004) Rouge: A package for automatic evaluation of summaries. In: Text summarization branches out, pp 74–81
– reference: Gheini M, Ren X, May J (2021a) Cross-attention is all you need: adapting pretrained transformers for machine translation. In: Proceedings of the 2021 conference on Empirical Methods in Natural Language Processing, pp 1754–1765
– reference: RaffelCShazeerNRobertsALeeKNarangSMatenaMZhouYLiWLiuPJExploring the limits of transfer learning with a unified text-to-text transformerJournal of Machine Learning Research202021167413812407255171
– reference: Lavie A, Sagae K, Jayaraman S (2004) The significance of recall in automatic metrics for MT evaluation. In: Conference of the Association for Machine Translation in the Americas, Springer, pp 134–143
– reference: Weidinger L, Mellor J, Rauh M, Griffin C, Uesato J, Huang PS, Cheng M, Glaese M, Balle B, Kasirzadeh A et al (2021) Ethical and social risks of harm from language models. arXiv preprint arXiv:2112.04359
– reference: IslamMAnikMHoqueSIslamATowards achieving a delicate blending between rule-based translator and neural machine translatorNeural Computing and Applications202133181214112167
– reference: Bollacker K, Evans C, Paritosh P, Sturge T, Taylor J (2008) Freebase: a collaboratively created graph database for structuring human knowledge. In: Proceedings of the 2008 ACM SIGMOD international conference on management of data, pp 1247–1250
– reference: ZhouJCaoYWangXLiPXuWDeep recurrent models with fast-forward connections for neural machine translationTransactions of the Association for Computational Linguistics20164371383
– reference: Luong MT, Sutskever I, Le QV, Vinyals O, Zaremba W (2014) Addressing the rare word problem in neural machine translation. arXiv preprint arXiv:1410.8206
– reference: Devlin J, Chang MW, Lee K, Toutanova K (2018) Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805
– reference: Bentivogli L, Bisazza A, Cettolo M, Federico M (2016) Neural versus phrase-based machine translation quality: a case study. arXiv preprint arXiv:1608.04631
– reference: Bapna A, Firat O, Wang P, Macherey W, Cheng Y, Cao Y (2022) Multilingual Mix: Example Interpolation Improves Multilingual Neural Machine Translation. In: ACL 2022
– reference: WuHWangHPivot language approach for phrase-based statistical machine translationMachine Translation2007213165181
– reference: KlakowDPetersJTesting the correlation of word error rate and perplexitySpeech Communication2002381–219281005.68806
– reference: Stanovsky G, Smith NA, Zettlemoyer L (2019) Evaluating gender bias in machine translation. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Association for Computational Linguistics, Florence, Italy, pp 1679–1684, https://doi.org/10.18653/v1/P19-1164, https://aclanthology.org/P19-1164
– reference: Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I (2017) Attention is all you need. Adv Neural Inf Process Syst 30:1
– reference: Sutskever I, Vinyals O, Le QV (2014) Sequence to sequence learning with neural networks. In: Advances in neural information processing systems, pp 3104–3112
– reference: Dabre R, Imankulova A, Kaneko M, Chakrabarty A (2021) Simultaneous multi-pivot neural machine translation. arXiv preprint arXiv:2104.07410
– reference: Nießen S, Ney H (2000) Improving SMT quality with morpho-syntactic analysis. In: COLING 2000 Volume 2: the 18th international conference on computational linguistics
– reference: Meng F, Lu Z, Li H, Liu Q (2016) Interactive attention for neural machine translation. arXiv preprint arXiv:1610.05011
– reference: VieiraLNO’HaganMO’SullivanCUnderstanding the societal impacts of machine translation: a critical review of the literature on medical and legal use casesInformation, Communication & Society2021241115151532
– reference: Moon J, Cho H, Park EL (2020) Revisiting round-trip translation for quality estimation. arXiv preprint arXiv:2004.13937
– reference: OrtegaJECastro MamaniRChoKNeural machine translation with a polysynthetic low resource languageMachine Translation2020344325346
– reference: WangSComputers and Translation: A Translator’s GuideLanguage2005812544545
– reference: Huck M, Birch A (2015) The Edinburgh machine translation systems for IWSLT 2015. In: Proceedings of the 12th International Workshop on Spoken Language Translation: Evaluation Campaign
– reference: Sennrich R, Haddow B, Birch A (2015) Improving neural machine translation models with monolingual data. arXiv preprint arXiv:1511.06709
– reference: Kalchbrenner N, Espeholt L, Simonyan K, Oord Avd, Graves A, Kavukcuoglu K (2016) Neural machine translation in linear time. arXiv preprint arXiv:1610.10099
– reference: Jian Zhang MZ Ji Wu (2003) The improvement of automatic machine translation evaluation. J Chin Inf Process 17(6):2, http://jcip.cipsc.org.cn/CN/abstract/article_1823.shtml
– reference: Dajun Z, Yun W (2015) Corpus-based machine translation: Its current development and perspectives. In: International Forum of Teaching and Studies, American Scholars Press, Inc., vol 11, p 90
– reference: KennyDMoorkensJDo CarmoFFair MT: Towards ethical, sustainable machine translationTranslation Spaces202091111
– reference: Koehn P, Chiang D (2019) Special interest group of machine translation. http://www.sigmt.org. Accessed 08 Apr 2022
– reference: Cheng Y, Jiang L, Macherey W (2019) Robust Neural Machine Translation with Doubly Adversarial Inputs. In: ACL
– reference: Hull DA, Grefenstette G (1996) Querying across languages: a dictionary-based approach to multilingual information retrieval. In: Proceedings of the 19th annual international ACM SIGIR conference on Research and development in information retrieval, ACM, pp 49–57
– reference: CasasNCosta-jussàMRFonollosaJAAlonsoJAFanloRLinguistic knowledge-based vocabularies for Neural Machine TranslationNatural Language Engineering2021274485506
– reference: PratesMOAvelarPHLambLCAssessing gender bias in machine translation: a case study with google translateNeural Computing and Applications2020321063636381
– reference: Li Q, Zhang X, Xiong J, Hwu Wm, Chen D (2019) Implementing neural machine translation with bi-directional GRU and attention mechanism on FPGAs using HLS. In: Proceedings of the 24th Asia and South Pacific Design Automation Conference, pp 693–698
– reference: Of Standards NNI, Technology) (2010) Open Machine Translation Evaluation. https://www.nist.gov/itl/iad/mig/open-machine-translation-evaluation. Accessed 08 Apr 2022
– reference: AhmadniaBHaffariGSerranoJRound-trip training approach for bilingually low-resource statistical machine translation systemsInt J Artif Intell2019171167185
– reference: Ma S, Sun X, Wang Y, Lin J (2018) Bag-of-words as target for neural machine translation. arXiv preprint arXiv:1805.04871
– reference: Bahdanau D, Cho K, Bengio Y (2014) Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473
– reference: Klein G, Kim Y, Deng Y, Senellart J, Rush AM (2017) Opennmt: Open-source toolkit for neural machine translation. arXiv preprint arXiv:1701.02810
– reference: RichardsCBoumanWPSealLBarkerMJNiederTOT’SjoenGNon-binary or genderqueer gendersInternational Review of Psychiatry201628195102
– reference: Doddington G (2002) Automatic evaluation of machine translation quality using n-gram co-occurrence statistics. In: Proceedings of the second international conference on Human Language Technology Research, Morgan Kaufmann Publishers Inc., pp 138–145
– reference: Mueller V (2022) An introduction to synchronous grammars. Tutorial https://medium.com/towards-data-science/attention-please-85bd0abac41. Accessed 05 Apr 2022
– reference: Yang Z, Yang D, Dyer C, He X, Smola A, Hovy E (2016) Hierarchical attention networks for document classification. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 1480–1489
– reference: Edunov S, Ott M, Auli M, Grangier D (2018) Understanding back-translation at scale. arXiv preprint arXiv:1808.09381
– reference: Wu Y, Schuster M, Chen Z, Le QV, Norouzi M, Macherey W, Krikun M, Cao Y, Gao Q, Macherey K et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:1609.08144
– reference: HorváthIAI in interpreting: Ethical considerationsAcross Lang Cult2022231113
– reference: Chiang D, Knight K (2006) An introduction to synchronous grammars. Tutorial https://www3.nd.edu/~dchiang/papers/synchtut.pdf. Accessed 4 Jan 2022
– reference: Luong MT, Pham H, Manning CD (2015) Effective Approaches to Attention-based Neural Machine Translation. In: Proceedings of the 2015 conference on Empirical Methods in Natural Language Processing, pp 1412–1421
– reference: Zollmann A, Venugopal A, Och FJ, Ponte J (2008) A Systematic Comparison of Phrase-Based, Hierarchical and Syntax-Augmented Statistical MT. In: Proceedings of the 22nd International Conference on Computational Linguistics (Coling 2008), pp 1145–1152
– reference: Chah N (2018) OK Google, what is your ontology? Or: exploring freebase classification to understand Google’s Knowledge Graph. arXiv preprint arXiv:1805.03885
– reference: Zhao Y, Xiang L, Zhu J, Zhang J, Zhou Y, Zong C (2020) Knowledge graph enhanced neural machine translation via multi-task learning on sub-entity granularity. In: Proceedings of the 28th International Conference on Computational Linguistics, pp 4495–4505
– reference: Europarl (2022) Europarl: European Parliament Proceedings Parallel Corpus. https://www.statmt.org/europarl/. Accessed 30 Sep 2022
– reference: Hardmeier C (2012) Discourse in statistical machine translation. a survey and a case study. Discours Revue de linguistique, psycholinguistique et informatique A journal of linguistics, psycholinguistics and computational linguistics (11)
– reference: Luccioni A, Viviano J (2021) What’s in the box? an analysis of undesirable content in the Common Crawl corpus. In: Proceedings of the 59th annual meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers), pp 182–189
– reference: LabakaGEspaña-BonetCMàrquezLSarasolaKA hybrid machine translation architecture guided by syntaxMachine translation201428291125
– reference: Abid A, Farooqi M, Zou J (2021) Persistent anti-muslim bias in large language models. In: Proceedings of the 2021 AAAI/ACM conference on AI, Ethics, and Society, pp 298–306
– reference: LiuJComparing and Analyzing Cohesive Devices of SMT and NMT from Chinese to English: A Diachronic ApproachOpen Journal of Modern Linguistics2020106765772
– reference: Gispert Ramis A (2007) Introducing linguistic knowledge into statistical machine translation. Universitat Politècnica de Catalunya
– reference: WahlerMEA word is worth a thousand words: Legal implications of relying on machine translation technologyStetson L Rev201848109
– reference: Ramnath S, Johnson M, Gupta A, Raghuveer A (2021) HintedBT: Augmenting Back-Translation with Quality and Transliteration Hints. In: EMNLP 2021
– reference: WuDStochastic inversion transduction grammars and bilingual parsing of parallel corporaComputational linguistics1997233377403
– reference: Ringler D, Paulheim H (2017) One knowledge graph to rule them all? Analyzing the differences between DBpedia, YAGO, Wikidata & co. In: Joint German/Austrian Conference on Artificial Intelligence (Künstliche Intelligenz), Springer, pp 366–372
– reference: Pryzant R, Chung Y, Jurafsky D, Britz D (2018) JESC: Japanese-English Subtitle Corpus. In: Proceedings of the eleventh International Conference on Language Resources and Evaluation (LREC 2018)
– reference: Xu K, Ba J, Kiros R, Cho K, Courville A, Salakhudinov R, Zemel R, Bengio Y (2015) Show, attend and tell: Neural image caption generation with visual attention. In: International conference on machine learning, pp 2048–2057
– reference: YamadaMThe impact of Google Neural Machine Translation on Post-editing by student translatorsThe Journal of Specialised Translation20193187106
– reference: SharmaSSharmaSAthaiyaAActivation functions in neural networkstowards data science2017612310316
– reference: Kharitonova K (2021) Linguistics4fairness: neutralizing Gender Bias in neural machine translation by introducing linguistic knowledge. Master’s thesis, Universitat Politècnica de Catalunya
– reference: White JS (1995) Approaches to black box MT evaluation. Citeseer, proceedings of machine translation summit V, vol 10
– reference: HillDCGombayCSanchezOWoappiBRomero VélezASDavidsonSRichardsonEZLost in machine translation: The promises and pitfalls of machine translation for multilingual group work in global health educationDiscover Education20221115
– reference: Yamada K, Knight K (2001) A syntax-based statistical translation model. In: Proceedings of the 39th annual meeting of the Association for Computational Linguistics, pp 523–530
– reference: Jurafsky D, Martin JH (2022) Speech and language processing: an introduction to natural language processing, computational linguistics, and speech recognition, chapter 10: machine translation and encoder-decoder models, 10.9 Bias and Ethical Issues (3rd (draft) ed.). Accessed on 08 Apr 2022
– reference: Ahmed A, Hanneman G (2005) Syntax-based statistical machine translation: a review. Comput Linguist 1:1
– reference: AhmadniaBDorrBJAugmenting neural machine translation through round-trip training approachOpen Computer Science201991268278
– reference: Buck C, Heafield K, Van Ooyen B (2014) N-gram counts and language models from the common crawl. In: Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC’14), pp 3579–3584
– reference: Shannon CE, Weaver W (1949) The mathematical theory of information. University of Illinois Press
– reference: United Nations Parallel Corpus (2022) https://conferences.unite.un.org/uncorpus. Accessed 30 Sep 2022
– reference: Yun Huang QL Yang Liu (2008) Introduction on machine translation evaluation
– reference: Pierce J (1966) Language and machines: computers in translation and linguistics; a Report. National Research Council
– reference: Rescigno AA, Vanmassenhove E, Monti J, Way A (2020) A case study of natural gender phenomena in translation. A comparison of Google Translate, Bing Microsoft Translator and DeepL for English to Italian, French and Spanish. In: CLiC-it
– reference: Ko WJ, El-Kishky A, Renduchintala A, Chaudhary V, Goyal N, Guzmán F, Fung P, Koehn P, Diab M (2021) Adapting high-resource NMT models to translate low-resource related languages without parallel data. arXiv preprint arXiv:2105.15071
– reference: Johnson M (2020) A scalable approach to reducing gender bias in Google translate, https://ai.googleblog.com/2020/04/a-scalable-approach-to-reducing-gender.html. Google AI Blog Accessed on 30 Sep 2022
– reference: MoonTKThe expectation-maximization algorithmIEEE Signal processing magazine19961364760
– reference: TomalinMByrneBConcannonSSaundersDUllmannSThe practical ethics of bias reduction in machine translation: why domain adaptation is better than data debiasingEthics and Information Technology2021233419433
– reference: Shazeer N, Mirhoseini A, Maziarz K, Davis A, Le Q, Hinton G, Dean J (2017) Outrageously large neural networks: the sparsely-gated mixture-of-experts layer. arXiv preprint arXiv:1701.06538
– reference: Esplà-Gomis M, Forcada ML, Ramírez-Sánchez G, Hoang H (2019) ParaCrawl: Web-scale parallel corpora for the languages of the EU. In: Proceedings of Machine Translation Summit XVII: Translator, Project and User Tracks, pp 118–119
– reference: Koehn P, Hoang H, Birch A, Callison-Burch C, Federico M, Bertoldi N, Cowan B, Shen W, Moran C, Zens R et al (2007) Moses: Open source toolkit for statistical machine translation. In: Proceedings of the 45th annual meeting of the association for computational linguistics companion volume proceedings of the demo and poster sessions, pp 177–180
– reference: Lin CY, Och FJ (2004) Automatic evaluation of machine translation quality using longest common subsequence and skip-bigram statistics. In: Proceedings of the 42nd Annual Meeting of the Association for Computational Linguistics (ACL-04), pp 605–612
– reference: Corbí-Bellot AM, Forcada ML, Ortiz-Rojas S, Pérez-Ortiz JA, Ramírez-Sánchez G, Sánchez-Martínez F, Alegria I, Mayor A, Sarasola K (2005) An open-source shallow-transfer machine translation engine for the Romance languages of Spain. In: Proceedings of the 10th EAMT conference: practical applications of machine translation
– reference: Wikimatrix (2022) Mining 135m parallel sentences in 1620 language pairs from wikipedia. https://github.com/facebookresearch/LASER/tree/main/tasks/WikiMatrix. Accessed 30 Sep 2022
– reference: Common Crawl corpus (2022) https://commoncrawl.org/. Accessed 30 Sep 2022
– reference: SchusterMPaliwalKKBidirectional recurrent neural networksIEEE Transactions on Signal Processing1997451126732681
– reference: Papineni K, Roukos S, Ward T, Zhu WJ (2002) BLEU: a method for automatic evaluation of machine translation. In: Proceedings of the 40th annual meeting on association for computational linguistics, Association for Computational Linguistics, pp 311–318
– reference: ParaCrwal (2022) ParaCrawl: Web-scale parallel corpora for the languages of the EU. https://paracrawl.eu/. Accessed 30 Sep 2022
– reference: FuruseOIidaHAn example-based method for transfer-driven machine translationTMI19921992139150
– reference: LiuXWangYWangXXuHLiCXinXBi-directional gated recurrent unit neural network based nonlinear equalizer for coherent optical communication systemOptics Express202129459235933
– reference: Zhou W, Ge T, Mu C, Xu K, Wei F, Zhou M (2019) Improving grammatical error correction with machine translation pairs. arXiv preprint arXiv:1911.02825
– reference: Popović M (2017) chrF++: words helping character n-grams. In: Proceedings of the second conference on machine translation, pp 612–618
– reference: Rothman D (2021) Transformers for Natural Language Processing: build innovative deep neural network architectures for NLP with Python, PyTorch, TensorFlow, BERT, RoBERTa, and more. Packt Publishing Ltd
– reference: ACL (2022) ACL 2014 NINTH WORKSHOP ON STATISTICAL MACHINE TRANSLATION. Available at https://www.statmt.org/wmt14/translation-task.html. Accessed 05 Apr 2022
– reference: ACL 2015 NINTH WORKSHOP ON STATISTICAL MACHINE TRANSLATION (2022) https://www.statmt.org/wmt15/translation-task.html. Accessed 05 Apr 2022
– reference: Benesty J, Chen J, Huang Y, Cohen I (2009) Pearson correlation coefficient. In: Noise reduction in speech processing, Springer, pp 1–4
– reference: Sennrich R, Haddow B, Birch A (2015) Neural machine translation of rare words with subword units. arXiv preprint arXiv:1508.07909
– reference: Bender EM (2019) A typology of ethical risks in language technology with an eye towards where transparent documentation can help. In: Future of artificial intelligence: language, ethics, technology workshop
– reference: Wong YW, Mooney R (2007) Learning synchronous grammars for semantic parsing with lambda calculus. In: Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics, pp 960–967
– reference: Currey A, Heafield K (2019) Zero-resource neural machine translation with monolingual pivot data. In: Proceedings of the 3rd workshop on neural generation and translation, pp 99–107
– reference: ForcadaMLGinestí-RosellMNordfalkJO’ReganJOrtiz-RojasSPérez-OrtizJASánchez-MartínezFRamírez-SánchezGTyersFMApertium: a free/open-source platform for rule-based machine translationMachine translation2011252127144
– reference: Lample G, Conneau A (2019) Cross-lingual language model pretraining. arXiv preprint arXiv:1901.07291
– reference: Ullmann S (2022) Gender bias in machine translation systems. In: Artificial Intelligence and Its Discontents, Springer, pp 123–144
– reference: FärberMEllBMenneCRettingerAA comparative survey of dbpedia, freebase, opencyc, wikidata, and yagoSemantic Web Journal20151115
– reference: Auer S, Bizer C, Kobilarov G, Lehmann J, Cyganiak R, Ives Z (2007) Dbpedia: a nucleus for a web of open data. In: The semantic web, Springer, pp 722–735
– reference: Koehn P, Och FJ, Marcu D (2003) Statistical phrase-based translation. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology-Volume 1, Association for Computational Linguistics, pp 48–54
– reference: Singh SP, Kumar A, Darbari H, Singh L, Rastogi A, Jain S (2017) Machine translation using deep learning: An overview. In: 2017 international conference on computer, communications and electronics (comptelix), IEEE, pp 162–167
– reference: Gehring J, Auli M, Grangier D, Yarats D, Dauphin YN (2017) Convolutional sequence to sequence learning. In: Proceedings of the 34th International Conference on Machine Learning-Volume 70, JMLR. org, pp 1243–1252
– reference: Gheini M, Ren X, May J (2021b) On the strengths of cross-attention in pretrained transformers for machine translation
– reference: Schwenk H, Chaudhary V, Sun S, Gong H, Guzmán F (2019) Wikimatrix: Mining 135m parallel sentences in 1620 language pairs from wikipedia. arXiv preprint arXiv:1907.05791
– reference: Chapelle O, Weston J, Bottou L, Vapnik V (2000) Vicinal risk minimization. Adv Neural Inf Process Syst 13:1
– reference: Colah (2015) Understanding LSTM networks. http://colah.github.io/posts/2015-08-Understanding-LSTMs/. Accessed 08 Apr 2022
– reference: Guo Z, Huang Z, Zhu KQ, Chen G, Zhang K, Chen B, Huang F (2021) Automatically paraphrasing via sentence reconstruction and round-trip translation. IJCAI
– reference: CanforaCOttmannARisks in neural machine translationTranslation Spaces2020915877
– reference: Dabre R, Cromieres F, Kurohashi S, Bhattacharyya P (2015) Leveraging small multilingual corpora for smt using many pivot languages. In: Proceedings of the 2015 conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 1192–1202
– reference: Kaljahi RSZ, Rubino R, Roturier J, Foster J, Park BB (2012) A detailed analysis of phrase-based and syntax-based machine translation: The search for systematic differences. In: Proceedings of AMTA
– reference: Ravikumar D, Kodge S, Garg I, Roy K (2020) Exploring Vicinal Risk Minimization for Lightweight Out-of-Distribution Detection. arXiv preprint arXiv:2012.08398
– reference: Moussallem D, Ngonga Ngomo AC, Buitelaar P, Arcan M (2019) Utilizing knowledge graphs for neural machine translation augmentation. In: Proceedings of the 10th international conference on knowledge capture, pp 139–146
– reference: BarzilayRKoehnPNatural Language Processing, Fall 2004, Machine Translation I, Lecture 202004MITCS an AI Lab
– reference: Kussul E, Baidyk T, Kasatkina L, Lukovich V (2001) Rosenblatt perceptrons for handwritten digit recognition. In: IJCNN’01. International Joint Conference on Neural Networks. Proceedings (Cat. No. 01CH37222), IEEE, vol 2, pp 1516–1520
– reference: Graves A (2012) Long short-term memory. In: Supervised sequence labelling with recurrent neural networks. Springer, Berlin. pp 37–45
– reference: Zhao Y, Zhang J, Zhou Y, Zong C (2020) Knowledge graphs enhanced neural machine translation. In: IJCAI, pp 4039–4045
– reference: Koehn P (2009) Chapter 4 Word-based models - Statistical Machine Translation. Cambridge University Press, Cambridge. Accessed 08 Apr 2022
– reference: Koehn P (2009) Statistical Machine Translation Lecture 5 Syntax-Based Models. Cambridge University Press, Cambridge. Accessed 08 Apr 2022
– reference: Bick E (2007) Dan2eng: wide-coverage Danish-English machine translation. In: Proceedings of Machine Translation Summit XI: Papers
– reference: LiYXiongDZhangMA survey of neural machine translationChinese Journal of Computers20181227343931919
– reference: MarcusMPMarcinkiewiczMASantoriniBBuilding a large annotated corpus of English: the penn treebankComputational Linguistics1993192313330
– reference: BrownPFPietraVJDPietraSADMercerRLThe mathematics of statistical machine translation: Parameter estimationComputational linguistics1993192263311
– reference: Stasimioti M, Sosoni V, Kermanidis KL, Mouratidis D (2020) Machine Translation Quality: a comparative evaluation of SMT, NMT and tailored-NMT outputs. In: Proceedings of the 22nd annual conference of the European Association for Machine Translation, pp 441–450
– reference: Koehn P (2005) Europarl: A parallel corpus for statistical machine translation. In: Proceedings of machine translation summit x: papers, pp 79–86
– reference: Wang W, Pan SJ, Dahlmeier D, Xiao X (2017) Coupled multi-layer attentions for co-extraction of aspect and opinion terms. In: Thirty-First AAAI Conference on Artificial Intelligence
– reference: Rocktäschel T, Grefenstette E, Hermann KM, Kočiskỳ T, Blunsom P (2015) Reasoning about entailment with neural attention. arXiv preprint arXiv:1509.06664
– reference: Strubell E, Ganesh A, McCallum A (2019) Energy and Policy Considerations for Deep Learning in NLP. In: Proceedings of the 57th annual meeting of the Association for Computational Linguistics, pp 3645–3650
– reference: Sun T, Shah A, Webster K, Johnson M (eds) (2021) They, them, theirs: rewriting with gender-neutral English, arXiv:2102.06788
– reference: Agency DARP (2003) Program Translingual Information Detection, Extraction and Summarization. http://www.darpa.mil/ipto/programs/tides/. Accessed 08 Apr 2022
– reference: Caswell I, Liang B (2022) Recent Advances in Google Translate. Tutorial https://ai.googleblog.com/2020/06/recent-advances-in-google-translate.html. Accessed 05 Apr 2022
– reference: Rebele T, Suchanek F, Hoffart J, Biega J, Kuzey E, Weikum G (2016) YAGO: A multilingual knowledge base from wikipedia, wordnet, and geonames. In: International semantic web conference, Springer, pp 177–185
– reference: DempsterAPLairdNMRubinDBMaximum likelihood from incomplete data via the EM algorithmJournal of the Royal Statistical Society: Series B (Methodological)19773911225015370364.62022
– reference: ZakirHMNagoorMSA Brief Study of Challenges in Machine TranslationInt J Comput Sci Issues (IJCSI)201714254
– reference: KoehnPStatistical machine translation2009Cambridge University Press1202.68446
– reference: Shieber SM, Schabes Y (1990) Synchronous tree-adjoining grammars. In: Proceedings of the 13th conference on Computational linguistics-Volume 3, pp 253–258
– reference: VandeghinsteVMartensSKotzéGTiedemannJVan den BogaertJDe SmetKVan EyndeFVan NoordGParse and corpus-based machine translationEssential Speech and Language Technology for Dutch2013Berlin, HeidelbergSpringer305319
– reference: Jean S, Cho K, Memisevic R, Bengio Y (2015) On Using Very Large Target Vocabulary for Neural Machine Translation. In: Proceedings of the 53rd annual meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp 1–10
– reference: OchFJNeyHA Systematic Comparison of Various Statistical Alignment ModelsComputational Linguistics200329119511234.68428
– reference: AhmadniaBSerranoJHaffariGPersian-Spanish low-resource statistical machine translation through English as pivot languageProceedings of the International Conference Recent Advances in Natural Language Processing, RANLP201720172430
– reference: IWSLT (2018) International Workshop on Spoken Language Translation. https://workshop2018.iwslt.org/. Accessed 08 Apr 2022
– reference: Staudemeyer RC, Morris ER (2019) Understanding LSTM–a tutorial into long short-term memory recurrent neural networks. arXiv preprint arXiv:1909.09586
– reference: Karim R (2019) Illustrated attention. https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3. Accessed 08 Apr 2022
– reference: ÁlvaroRochaAdeliHReisLPCostanzoSTrends and Advances in Information Systems and Technologies2018Springer
– reference: He D, Xia Y, Qin T, Wang L, Yu N, Liu TY, Ma WY (2016) Dual learning for machine translation. Adv Neural Inf Process Syst 29
– reference: Ranathunga S, Lee ESA, Skenduli MP, Shekhar R, Alam M, Kaur R (2021) Neural machine translation for low-resource languages: a survey. arXiv preprint arXiv:2106.15115
– reference: SchiebingerLScientific research must take gender into accountNature2014507749099
– reference: Mehandru N, Robertson S, Salehi N (2022) Reliable and Safe Use of Machine Translation in Medical Settings. In: Proceedings of the 2022 ACM Conference on Fairness, Accountability, and Transparency (Seoul, South Korea)(FAccT’22). Association for Computing Machinery, New York, NY, USA
– reference: Banerjee S, Lavie A (2005) METEOR: an automatic metric for MT evaluation with improved correlation with human judgments. In: Proceedings of the acl workshop on intrinsic and extrinsic evaluation measures for machine translation and/or summarization, pp 65–72
– reference: Costa-JussaMRFonollosaJALatest trends in hybrid machine translation and its applicationsComput Speech Lang2015321310
– reference: PapadimitriouCHComputational complexity2003John Wiley and Sons Ltd0557.68033
– volume: 17
  start-page: 167
  issue: 1
  year: 2019
  ident: 10423_CR7
  publication-title: Int J Artif Intell
– ident: 10423_CR34
  doi: 10.3115/v1/D14-1179
– ident: 10423_CR80
– volume: 28
  start-page: 95
  issue: 1
  year: 2016
  ident: 10423_CR141
  publication-title: International Review of Psychiatry
  doi: 10.3109/09540261.2015.1106446
– ident: 10423_CR159
  doi: 10.1109/COMPTELIX.2017.8003957
– ident: 10423_CR53
  doi: 10.18653/v1/2022.findings-acl.263
– ident: 10423_CR106
  doi: 10.1007/978-981-13-3083-4_3
– volume: 18
  start-page: 121
  year: 2022
  ident: 10423_CR116
  publication-title: Machine translation for everyone: Empowering users in the age of artificial intelligence
– volume: 81
  start-page: 544
  issue: 2
  year: 2005
  ident: 10423_CR180
  publication-title: Language
  doi: 10.1353/lan.2005.0105
– ident: 10423_CR22
– ident: 10423_CR196
– ident: 10423_CR68
– volume: 9
  start-page: 1
  issue: 1
  year: 2020
  ident: 10423_CR81
  publication-title: Translation Spaces
  doi: 10.1075/ts.00018.int
– ident: 10423_CR74
– ident: 10423_CR51
– volume: 34
  start-page: 325
  issue: 4
  year: 2020
  ident: 10423_CR126
  publication-title: Machine Translation
  doi: 10.1007/s10590-020-09255-9
– ident: 10423_CR45
– ident: 10423_CR9
– ident: 10423_CR109
  doi: 10.18653/v1/D15-1166
– volume: 9
  start-page: 845
  year: 2021
  ident: 10423_CR148
  publication-title: Transactions of the Association for Computational Linguistics
  doi: 10.1162/tacl_a_00401
– ident: 10423_CR144
– ident: 10423_CR184
– ident: 10423_CR60
  doi: 10.1007/978-3-642-24797-2_4
– ident: 10423_CR97
  doi: 10.1007/978-3-540-30194-3_16
– ident: 10423_CR56
– ident: 10423_CR48
  doi: 10.3115/1289189.1289273
– ident: 10423_CR138
– ident: 10423_CR190
– volume: 1
  start-page: 1
  issue: 1
  year: 2015
  ident: 10423_CR55
  publication-title: Semantic Web Journal
– ident: 10423_CR193
  doi: 10.3115/1073012.1073079
– ident: 10423_CR132
  doi: 10.18653/v1/W17-4770
– ident: 10423_CR41
  doi: 10.18653/v1/P17-1055
– volume: 27
  start-page: 485
  issue: 4
  year: 2021
  ident: 10423_CR26
  publication-title: Natural Language Engineering
  doi: 10.1017/S1351324920000364
– ident: 10423_CR204
  doi: 10.3115/1599081.1599225
– ident: 10423_CR167
  doi: 10.18653/v1/P19-1159
– volume: 27
  start-page: 58
  issue: 1
  year: 2019
  ident: 10423_CR145
  publication-title: Perspectives
  doi: 10.1080/0907676X.2018.1473452
– ident: 10423_CR28
– ident: 10423_CR202
  doi: 10.18653/v1/2020.findings-emnlp.30
– ident: 10423_CR156
– volume: 19
  start-page: 313
  issue: 2
  year: 1993
  ident: 10423_CR111
  publication-title: Computational Linguistics
– volume: 10
  start-page: 765
  issue: 6
  year: 2020
  ident: 10423_CR103
  publication-title: Open Journal of Modern Linguistics
  doi: 10.4236/ojml.2020.106046
– volume: 29
  start-page: 19
  issue: 1
  year: 2003
  ident: 10423_CR121
  publication-title: Computational Linguistics
  doi: 10.1162/089120103321337421
– ident: 10423_CR91
  doi: 10.3115/1073445.1073462
– volume: 14
  start-page: 54
  issue: 2
  year: 2017
  ident: 10423_CR197
  publication-title: Int J Comput Sci Issues (IJCSI)
  doi: 10.20943/01201702.5457
– volume: 39
  start-page: 1
  issue: 1
  year: 1977
  ident: 10423_CR46
  publication-title: Journal of the Royal Statistical Society: Series B (Methodological)
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– volume: 32
  start-page: 3
  issue: 1
  year: 2015
  ident: 10423_CR39
  publication-title: Comput Speech Lang
  doi: 10.1016/j.csl.2014.11.001
– ident: 10423_CR195
  doi: 10.18653/v1/N19-1407
– ident: 10423_CR85
  doi: 10.18653/v1/2021.acl-long.66
– ident: 10423_CR96
– ident: 10423_CR122
– ident: 10423_CR3
  doi: 10.1145/3461702.3462624
– ident: 10423_CR40
– ident: 10423_CR30
  doi: 10.1007/978-981-32-9748-7_4
– ident: 10423_CR79
– volume-title: Computational complexity
  year: 2003
  ident: 10423_CR128
– ident: 10423_CR160
– volume: 21
  start-page: 299
  year: 2020
  ident: 10423_CR8
  publication-title: Computer Science
  doi: 10.7494/csci.2020.21.3.3701
– ident: 10423_CR154
– ident: 10423_CR63
  doi: 10.4000/discours.8726
– ident: 10423_CR131
– volume: 13
  start-page: 47
  issue: 6
  year: 1996
  ident: 10423_CR114
  publication-title: IEEE Signal processing magazine
  doi: 10.1109/79.543975
– ident: 10423_CR177
– ident: 10423_CR125
– volume: 6
  start-page: 310
  issue: 12
  year: 2017
  ident: 10423_CR155
  publication-title: towards data science
– ident: 10423_CR78
– ident: 10423_CR140
  doi: 10.4000/books.aaccademia.8844
– ident: 10423_CR194
  doi: 10.18653/v1/N16-1174
– ident: 10423_CR58
  doi: 10.18653/v1/2021.emnlp-main.132
– start-page: 305
  volume-title: Essential Speech and Language Technology for Dutch
  year: 2013
  ident: 10423_CR176
  doi: 10.1007/978-3-642-30910-6_17
– ident: 10423_CR157
  doi: 10.3115/991146.991191
– ident: 10423_CR69
  doi: 10.1145/243199.243212
– ident: 10423_CR21
  doi: 10.1145/1376616.1376746
– ident: 10423_CR2
– ident: 10423_CR101
  doi: 10.3115/1073445.1073465
– ident: 10423_CR11
  doi: 10.1007/978-3-540-76298-0_52
– volume: 1992
  start-page: 139
  year: 1992
  ident: 10423_CR54
  publication-title: TMI
– ident: 10423_CR90
– ident: 10423_CR152
  doi: 10.18653/v1/P16-1009
– volume: 23
  start-page: 1
  issue: 1
  year: 2022
  ident: 10423_CR67
  publication-title: Across Lang Cult
  doi: 10.1556/084.2022.00108
– ident: 10423_CR183
– volume: 24
  start-page: 1515
  issue: 11
  year: 2021
  ident: 10423_CR178
  publication-title: Information, Communication & Society
  doi: 10.1080/1369118X.2020.1776370
– ident: 10423_CR137
– volume: 33
  start-page: 12141
  issue: 18
  year: 2021
  ident: 10423_CR72
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-021-05895-x
– volume: 23
  start-page: 419
  issue: 3
  year: 2021
  ident: 10423_CR172
  publication-title: Ethics and Information Technology
  doi: 10.1007/s10676-021-09583-1
– ident: 10423_CR38
– volume: 32
  start-page: 6363
  issue: 10
  year: 2020
  ident: 10423_CR133
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-019-04144-6
– volume: 45
  start-page: 2673
  issue: 11
  year: 1997
  ident: 10423_CR150
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/78.650093
– ident: 10423_CR203
– ident: 10423_CR182
– ident: 10423_CR165
– ident: 10423_CR33
– volume: 38
  start-page: 19
  issue: 1–2
  year: 2002
  ident: 10423_CR83
  publication-title: Speech Communication
  doi: 10.1016/S0167-6393(01)00041-3
– ident: 10423_CR115
– ident: 10423_CR16
– ident: 10423_CR89
– ident: 10423_CR62
  doi: 10.18653/v1/E17-2038
– ident: 10423_CR199
  doi: 10.18653/v1/2020.coling-main.397
– ident: 10423_CR171
– ident: 10423_CR49
  doi: 10.18653/v1/D18-1045
– ident: 10423_CR50
– volume: 19
  start-page: 263
  issue: 2
  year: 1993
  ident: 10423_CR23
  publication-title: Computational linguistics
– ident: 10423_CR44
– ident: 10423_CR27
– ident: 10423_CR153
  doi: 10.18653/v1/P16-1162
– volume: 31
  start-page: 87
  year: 2019
  ident: 10423_CR192
  publication-title: The Journal of Specialised Translation
– ident: 10423_CR143
– ident: 10423_CR43
  doi: 10.3115/v1/N15-1125
– ident: 10423_CR108
  doi: 10.3115/v1/P15-1002
– ident: 10423_CR59
– ident: 10423_CR107
  doi: 10.18653/v1/2021.acl-short.24
– ident: 10423_CR36
– ident: 10423_CR13
– ident: 10423_CR170
– ident: 10423_CR31
  doi: 10.18653/v1/P19-1425
– volume-title: Trends and Advances in Information Systems and Technologies
  year: 2018
  ident: 10423_CR10
– ident: 10423_CR1
– ident: 10423_CR142
  doi: 10.1007/978-3-319-67190-1_33
– volume: 21
  start-page: 1
  year: 2020
  ident: 10423_CR135
  publication-title: Journal of Machine Learning Research
– ident: 10423_CR65
  doi: 10.1016/B978-0-12-741252-8.50010-8
– ident: 10423_CR104
  doi: 10.1007/978-981-13-3083-4_7
– ident: 10423_CR57
  doi: 10.18653/v1/2021.emnlp-main.132
– ident: 10423_CR130
– ident: 10423_CR124
– volume: 7
  start-page: 220
  issue: 4
  year: 1991
  ident: 10423_CR158
  publication-title: Computational Intelligence
  doi: 10.1111/j.1467-8640.1991.tb00396.x
– ident: 10423_CR77
– volume: 21
  start-page: 165
  issue: 3
  year: 2007
  ident: 10423_CR189
  publication-title: Machine Translation
  doi: 10.1007/s10590-008-9041-6
– ident: 10423_CR139
  doi: 10.1007/978-3-319-46547-0_19
– ident: 10423_CR129
  doi: 10.3115/1073083.1073135
– ident: 10423_CR187
– ident: 10423_CR35
  doi: 10.3115/v1/W14-4012
– volume: 25
  start-page: 127
  issue: 2
  year: 2011
  ident: 10423_CR52
  publication-title: Machine translation
  doi: 10.1007/s10590-011-9090-0
– ident: 10423_CR82
– ident: 10423_CR166
  doi: 10.18653/v1/P19-1355
– ident: 10423_CR84
  doi: 10.18653/v1/P17-4012
– ident: 10423_CR100
– ident: 10423_CR20
– volume: 1
  start-page: 1
  issue: 1
  year: 2022
  ident: 10423_CR66
  publication-title: Discover Education
  doi: 10.1007/s44217-022-00002-1
– ident: 10423_CR198
– ident: 10423_CR88
  doi: 10.3115/1557769.1557821
– ident: 10423_CR76
– ident: 10423_CR169
– ident: 10423_CR162
  doi: 10.18653/v1/P19-1164
– volume: 507
  start-page: 9
  issue: 7490
  year: 2014
  ident: 10423_CR149
  publication-title: Nature
  doi: 10.1038/507009a
– ident: 10423_CR12
– ident: 10423_CR117
  doi: 10.1145/3360901.3364423
– ident: 10423_CR37
– ident: 10423_CR32
  doi: 10.18653/v1/2020.acl-main.529
– ident: 10423_CR110
  doi: 10.18653/v1/P18-2053
– ident: 10423_CR147
– volume: 28
  start-page: 91
  issue: 2
  year: 2014
  ident: 10423_CR95
  publication-title: Machine translation
  doi: 10.1007/s10590-014-9153-0
– volume: 2017
  start-page: 24
  year: 2017
  ident: 10423_CR6
  publication-title: Proceedings of the International Conference Recent Advances in Natural Language Processing, RANLP
– volume: 19
  start-page: 1
  issue: 2
  year: 2019
  ident: 10423_CR71
  publication-title: ACM Transactions on Asian and Low-Resource Language Information Processing (TALLIP)
– ident: 10423_CR164
– volume-title: Statistical machine translation
  year: 2009
  ident: 10423_CR86
  doi: 10.1017/CBO9780511815829
– ident: 10423_CR93
– ident: 10423_CR151
– ident: 10423_CR70
– ident: 10423_CR73
  doi: 10.3115/v1/P15-1001
– ident: 10423_CR175
  doi: 10.1007/s43681-021-00043-6
– ident: 10423_CR181
  doi: 10.1609/aaai.v31i1.10974
– ident: 10423_CR163
– volume: 48
  start-page: 109
  year: 2018
  ident: 10423_CR179
  publication-title: Stetson L Rev
– ident: 10423_CR186
– ident: 10423_CR134
– ident: 10423_CR113
– ident: 10423_CR29
– ident: 10423_CR42
  doi: 10.18653/v1/D19-5610
– ident: 10423_CR14
– ident: 10423_CR87
– volume: 12
  start-page: 2734
  year: 2018
  ident: 10423_CR98
  publication-title: Chinese Journal of Computers
– ident: 10423_CR136
  doi: 10.18653/v1/2021.emnlp-main.129
– volume: 2005
  start-page: 127
  year: 2005
  ident: 10423_CR161
  publication-title: Proceedings of the Australasian Language Technology Workshop
– ident: 10423_CR123
  doi: 10.3115/1118037.1118045
– ident: 10423_CR17
  doi: 10.1007/978-3-642-00296-0_5
– ident: 10423_CR99
  doi: 10.1145/3287624.3287717
– volume: 4
  start-page: 371
  year: 2016
  ident: 10423_CR201
  publication-title: Transactions of the Association for Computational Linguistics
  doi: 10.1162/tacl_a_00105
– ident: 10423_CR185
– volume-title: Natural Language Processing, Fall 2004, Machine Translation I, Lecture 20
  year: 2004
  ident: 10423_CR15
– ident: 10423_CR94
  doi: 10.1109/IJCNN.2001.939589
– ident: 10423_CR191
– ident: 10423_CR118
– ident: 10423_CR120
  doi: 10.3115/992383.992448
– ident: 10423_CR112
  doi: 10.1145/3531146.3533244
– ident: 10423_CR146
– ident: 10423_CR24
– ident: 10423_CR19
– ident: 10423_CR47
– volume: 9
  start-page: 268
  issue: 1
  year: 2019
  ident: 10423_CR5
  publication-title: Open Computer Science
  doi: 10.1515/comp-2019-0019
– volume: 3
  start-page: 683
  issue: 5
  year: 1992
  ident: 10423_CR127
  publication-title: IEEE Transactions on neural networks
  doi: 10.1109/72.159058
– volume: 29
  start-page: 5923
  issue: 4
  year: 2021
  ident: 10423_CR105
  publication-title: Optics Express
  doi: 10.1364/OE.416672
– ident: 10423_CR173
  doi: 10.1007/978-3-030-88615-8_7
– ident: 10423_CR64
– ident: 10423_CR102
  doi: 10.3115/1218955.1219032
– ident: 10423_CR61
  doi: 10.24963/ijcai.2021/525
– ident: 10423_CR119
  doi: 10.3115/992730.992809
– ident: 10423_CR174
– volume: 9
  start-page: 58
  issue: 1
  year: 2020
  ident: 10423_CR25
  publication-title: Translation Spaces
  doi: 10.1075/ts.00021.can
– volume: 23
  start-page: 377
  issue: 3
  year: 1997
  ident: 10423_CR188
  publication-title: Computational linguistics
– ident: 10423_CR92
– ident: 10423_CR4
– ident: 10423_CR200
  doi: 10.24963/ijcai.2020/559
– ident: 10423_CR18
  doi: 10.18653/v1/D16-1025
– ident: 10423_CR75
– ident: 10423_CR168
SSID ssj0005243
Score 2.4666426
Snippet Machine translation (namely MT) has been one of the most popular fields in computational linguistics and Artificial Intelligence (AI). As one of the most...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 10137
SubjectTerms Analysis
Artificial Intelligence
Computational linguistics
Computer Science
Evaluation
Language processing
Linguistics
Machine translation
Natural language interfaces
Neural networks
Recurrent
Recurrent neural networks
Syntax
Translation
Translation methods and strategies
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB509eDF9YnVVXIQPGhw0zZp620RxYuL4IO9hTRNYEFW2VZ_v5M2ddcn6Llpms5kXszMNwCHSaYwaDAFtVYoDFBEQfMijKlludWZEbkO83rYRDIcpqNRduObwsq22r1NSdaaeq7ZLRYhRRuDqgOdAMoXYYk7tBkXo98-zBV2NLVyocgoBhTMt8p8v8cHc_RZKX_JjtZG57L7v-Ouwap3MsmguRXrsGAmG9BtBzgQL8-bcHpdl1IaUjmL1VTFETUpyLgqyQwH_IwoUsPQbsH95cXd-RX1ExSojnhaUebyKoqzXBmUUyOsibjWnBdGOKg9FUYqilDnMZv3dSbSvkXrnrEiETHGYSqLtqEzeZqYHSA8QeelQAfC4u8oq1XcN6lOQrwDCu0gC4C1hJTaw4u7KRePcgaM7CgikSKypojkARy_v_PcgGv8uvrI8Uc6ycOdtfINBHg-h2ElBwnHUCFOojSAXstC6UWylOhHoUJFfSMCOGlZNnv883d3_7Z8D1bcSPqmDq0HnWr6YvZhWb9W43J6UF_VN-PY3wc
  priority: 102
  providerName: Springer Nature
Title Machine translation and its evaluation: a study
URI https://link.springer.com/article/10.1007/s10462-023-10423-5
https://www.proquest.com/docview/2838879636
Volume 56
WOSCitedRecordID wos000937654900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7462
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005243
  issn: 0269-2821
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFH64Hby4i-NGDoIHDU7aJmm9iIoiiOPgrpeQpgkIMi5T_f2-tKnjgl68PCjdQt6evLwPYE1mGpMGW1DnhMYERRQ0L6KEOpY7k1mRmyivwCZkp5Pe3GTdsODWD2WVjU2sDHXxaPwa-Ra6QdQHFBex8_RMPWqU310NEBrDMIqOmnsEA3l9-6nEo66ai0RGMbVg4dBMODqXiIiix0JDhCEF5V8c03fz_GOftHI_h5P_HfgUTITAk-zWkjINQ7Y3A5MNqAMJOj4LWydVeaUlpfdidaUc0b2C3Jd9MugNvk00qVrTzsHl4cHF_hENqArUxDwtKfN7LZqzXFvUXSucjbkxnBdW-PZ7Oop1HKMdZC5vm0ykbYceP2OFFAnmZjqL52Gk99izC0C4xICmwKDC4RxqZ3TStqmREcqFRt_IWsCaKVUmtBz3yBcPatAs2bNBIRtUxQbFW7Dx8c5T3XDjz6fXPaeU10b8stHhUAGOz_e1UruSY_qQyDhtwXLDHhXUtK8GvGnBZsPgwe3f_7v499eWYNzD0te1aMswUr682hUYM2_lff9ltRLSVRjdO-h0z_DqWFKkJ-19T9kp0i6_Q3p2fvUO_4fv4A
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JS8QwFH6ICnpxF8c1B8WDBidpk7aCiLig6IweFLzFNE1AkHGZqvin_I2-dHFc0JsHz23T0Pe9rXnvewDLUaIxabAZdU5qTFBkRtOMh9Sx1JnEytTwtBg2EbXb8eVlctYHr3UvjC-rrG1iYaizW-P_kW-gG0R9QLjI7bt76qdG-dPVeoRGCYtj-_KMKVt362gP5bvC-cH--e4hraYKUBOIOKfMnzVowVJtEbtWOhsIY4TIrPT0c5oHOgjQDjCXNk0i46ZDj5ewLJIh5ibaky-hyR_wvHpeo1rs9ENJSVmlx2VCMZVhVZNO1aoXSk7RQ6LhwxCGik-O8Ks7-HYuW7i7g9H_9qHGYKQKrMlOqQnj0Gc7EzBaD60glQ2bhI1WUT5qSe69dFkJSHQnI9d5l_S4zzeJJgX17hRc_Mm2p6G_c9uxM0BEhAFbhkGTQ5lpZ3TYtLGJOOJeo-9nDWC1CJWpKNX9ZI8b1SOD9mJXKHZViF2JBqy9P3NXEor8eveqR4by1gZXNrpqmsD9ed4utRMJTI_CKIgbMF_DQVVmqKt6WGjAeg2o3uWf3zv7-2pLMHR43jpRJ0ft4zkY5h7WRd3dPPTnD492AQbNU37dfVgsFITA1V8D7Q0cmUNo
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bS-QwFD6Iiviy3nFcL3lQfNAw07RJ24VFvA2KOgyi4FtM0wQGZHSdusv-NX-dJ23qeEHffPC1l7Q03_nOOc3JdwDW41Rh0mByaq1QmKCInGY5i6gNMqtTIzLNsrLZRNzpJFdXaXcEHuu9MK6ssubEkqjzW-3-kTfRDaI9IFxE0_qyiO5Be-fuD3UdpNxKa91Oo4LIifn_D9O3we_jA5zrDcbahxf7R9R3GKA65ElBA7fuoHiQKYM4NsKakGvNeW6Ek6JTLFRhiJwQ2KylU5G0LHq_NMhjEWGeopwQE9L_WIzHMPEb2zvsdM9fFJhUNXtMpBQTm8Bv2fEb9yLBKPpLpEEMaCh_5RbfOod3q7Sl82tPfefPNg0_fMhNdisbmYER05-FqbqdBfHsNgfNs7Kw1JDC-e-qRpCofk56xYAMVdF_EUVKUd55uPyS116A0f5t3ywC4TGGcjmGUxbnT1mtopZJdMzQIhRGBUEDgno6pfZi667nx40cykQ7CEiEgCwhIHkDtp7vuaukRj69etOhRDoewpG18tsp8P2copfcjTkmTlEcJg1YrqEhPUEN5BAXDdiuwTU8_fFzlz4fbQ0mEF_y9Lhz8hMmmUN4WZC3DKPF_YNZgXH9t-gN7le9tRC4_mqkPQFBiU2H
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+translation+and+its+evaluation%3A+a+study&rft.jtitle=The+Artificial+intelligence+review&rft.au=Mondal%2C+Subrota+Kumar&rft.au=Zhang%2C+Haoxi&rft.au=Kabir%2C+H.+M.+Dipu&rft.au=Ni%2C+Kan&rft.date=2023-09-01&rft.issn=0269-2821&rft.eissn=1573-7462&rft.volume=56&rft.issue=9&rft.spage=10137&rft.epage=10226&rft_id=info:doi/10.1007%2Fs10462-023-10423-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10462_023_10423_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-2821&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-2821&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-2821&client=summon