Machine translation and its evaluation: a study
Machine translation (namely MT) has been one of the most popular fields in computational linguistics and Artificial Intelligence (AI). As one of the most promising approaches, MT can potentially break the language barrier of people from all over the world. Despite a number of studies in MT, there ar...
Gespeichert in:
| Veröffentlicht in: | The Artificial intelligence review Jg. 56; H. 9; S. 10137 - 10226 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Dordrecht
Springer Netherlands
01.09.2023
Springer Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0269-2821, 1573-7462 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Machine translation (namely MT) has been one of the most popular fields in computational linguistics and Artificial Intelligence (AI). As one of the most promising approaches, MT can potentially break the language barrier of people from all over the world. Despite a number of studies in MT, there are few studies in summarizing and comparing MT methods. To this end, in this paper, we principally focus on presenting the two mainstream MT schemes: statistical machine translation (SMT) and neural machine translation (NMT), including their basic rationales and developments. Meanwhile, the detailed translation models are also presented, such as the word-based model, syntax-based model, and phrase-based model in statistical machine translation. Similarly, approaches in NMT, such as the recurrent neural network-based, attention mechanism-based, and transformer-based models are presented. Last but not least, the evaluation approaches also play an important role in helping developers to improve their methods better in MT. The prevailing machine translation evaluation methodologies are also presented in this article. |
|---|---|
| AbstractList | Machine translation (namely MT) has been one of the most popular fields in computational linguistics and Artificial Intelligence (AI). As one of the most promising approaches, MT can potentially break the language barrier of people from all over the world. Despite a number of studies in MT, there are few studies in summarizing and comparing MT methods. To this end, in this paper, we principally focus on presenting the two mainstream MT schemes: statistical machine translation (SMT) and neural machine translation (NMT), including their basic rationales and developments. Meanwhile, the detailed translation models are also presented, such as the word-based model, syntax-based model, and phrase-based model in statistical machine translation. Similarly, approaches in NMT, such as the recurrent neural network-based, attention mechanism-based, and transformer-based models are presented. Last but not least, the evaluation approaches also play an important role in helping developers to improve their methods better in MT. The prevailing machine translation evaluation methodologies are also presented in this article. |
| Audience | Academic |
| Author | Mondal, Subrota Kumar Kabir, H. M. Dipu Dai, Hong-Ning Zhang, Haoxi Ni, Kan |
| Author_xml | – sequence: 1 givenname: Subrota Kumar orcidid: 0000-0002-0008-7797 surname: Mondal fullname: Mondal, Subrota Kumar email: skmondal@must.edu.mo organization: School of Computer Science and Engineering, Macau University of Science and Technology – sequence: 2 givenname: Haoxi surname: Zhang fullname: Zhang, Haoxi organization: School of Computer Science and Engineering, Macau University of Science and Technology – sequence: 3 givenname: H. M. Dipu surname: Kabir fullname: Kabir, H. M. Dipu organization: Deakin University – sequence: 4 givenname: Kan surname: Ni fullname: Ni, Kan organization: School of Computer Science and Engineering, Macau University of Science and Technology – sequence: 5 givenname: Hong-Ning surname: Dai fullname: Dai, Hong-Ning organization: The Department of Computer Science, Hong Kong Baptist University |
| BookMark | eNp9kF9LwzAUxYNMcJt-AZ8KPndLcps_9W0MncLEF30OWZrOjC6dSSvs2xtXQfBhBG4uh_NLOGeCRr71FqFbgmcEYzGPBBec5phCnrY02QUaEyYgF0kfoTGmvMyppOQKTWLcYYwZLWCM5i_afDhvsy5oHxvdudZn2leZ62Jmv3TTn6T7TGex66vjNbqsdRPtze89Re-PD2_Lp3z9unpeLta5ASa7nHDOhGZko62U2PLaAjOGscpyXEiuKWgAwoDUG2xKLnHNCZSkEryQZalLmKK74d1DaD97Gzu1a_vg05eKSpBSlBx4cs0G11Y3VjlftymGSaeye2dSRbVL-kIwIWghQCZADoAJbYzB1sq47pQwga5RBKufPtXQp0p9qlOfiiWU_kMPwe11OJ6HYIBiMvutDX8xzlDfSSCHCA |
| CitedBy_id | crossref_primary_10_1057_s41599_025_04777_0 crossref_primary_10_1016_j_eswa_2024_125439 crossref_primary_10_3390_math12070997 crossref_primary_10_1016_j_ijpe_2023_109016 crossref_primary_10_1016_j_ssaho_2025_101484 crossref_primary_10_1177_14727978251321985 crossref_primary_10_3390_app14156848 crossref_primary_10_1371_journal_pone_0297183 crossref_primary_10_1038_s41598_025_11282_6 crossref_primary_10_30605_25409190_826 crossref_primary_10_1007_s11042_024_19551_8 crossref_primary_10_1007_s44163_025_00222_y crossref_primary_10_3233_JCM_247538 |
| Cites_doi | 10.3115/v1/D14-1179 10.3109/09540261.2015.1106446 10.1109/COMPTELIX.2017.8003957 10.18653/v1/2022.findings-acl.263 10.1007/978-981-13-3083-4_3 10.1353/lan.2005.0105 10.1075/ts.00018.int 10.1007/s10590-020-09255-9 10.18653/v1/D15-1166 10.1162/tacl_a_00401 10.1007/978-3-642-24797-2_4 10.1007/978-3-540-30194-3_16 10.3115/1289189.1289273 10.3115/1073012.1073079 10.18653/v1/W17-4770 10.18653/v1/P17-1055 10.1017/S1351324920000364 10.3115/1599081.1599225 10.18653/v1/P19-1159 10.1080/0907676X.2018.1473452 10.18653/v1/2020.findings-emnlp.30 10.4236/ojml.2020.106046 10.1162/089120103321337421 10.3115/1073445.1073462 10.20943/01201702.5457 10.1111/j.2517-6161.1977.tb01600.x 10.1016/j.csl.2014.11.001 10.18653/v1/N19-1407 10.18653/v1/2021.acl-long.66 10.1145/3461702.3462624 10.1007/978-981-32-9748-7_4 10.7494/csci.2020.21.3.3701 10.4000/discours.8726 10.1109/79.543975 10.4000/books.aaccademia.8844 10.18653/v1/N16-1174 10.18653/v1/2021.emnlp-main.132 10.1007/978-3-642-30910-6_17 10.3115/991146.991191 10.1145/243199.243212 10.1145/1376616.1376746 10.3115/1073445.1073465 10.1007/978-3-540-76298-0_52 10.18653/v1/P16-1009 10.1556/084.2022.00108 10.1080/1369118X.2020.1776370 10.1007/s00521-021-05895-x 10.1007/s10676-021-09583-1 10.1007/s00521-019-04144-6 10.1109/78.650093 10.1016/S0167-6393(01)00041-3 10.18653/v1/E17-2038 10.18653/v1/2020.coling-main.397 10.18653/v1/D18-1045 10.18653/v1/P16-1162 10.3115/v1/N15-1125 10.3115/v1/P15-1002 10.18653/v1/2021.acl-short.24 10.18653/v1/P19-1425 10.1007/978-3-319-67190-1_33 10.1016/B978-0-12-741252-8.50010-8 10.1007/978-981-13-3083-4_7 10.1111/j.1467-8640.1991.tb00396.x 10.1007/s10590-008-9041-6 10.1007/978-3-319-46547-0_19 10.3115/1073083.1073135 10.3115/v1/W14-4012 10.1007/s10590-011-9090-0 10.18653/v1/P19-1355 10.18653/v1/P17-4012 10.1007/s44217-022-00002-1 10.3115/1557769.1557821 10.18653/v1/P19-1164 10.1038/507009a 10.1145/3360901.3364423 10.18653/v1/2020.acl-main.529 10.18653/v1/P18-2053 10.1007/s10590-014-9153-0 10.1017/CBO9780511815829 10.3115/v1/P15-1001 10.1007/s43681-021-00043-6 10.1609/aaai.v31i1.10974 10.18653/v1/D19-5610 10.18653/v1/2021.emnlp-main.129 10.3115/1118037.1118045 10.1007/978-3-642-00296-0_5 10.1145/3287624.3287717 10.1162/tacl_a_00105 10.1109/IJCNN.2001.939589 10.3115/992383.992448 10.1145/3531146.3533244 10.1515/comp-2019-0019 10.1109/72.159058 10.1364/OE.416672 10.1007/978-3-030-88615-8_7 10.3115/1218955.1219032 10.24963/ijcai.2021/525 10.3115/992730.992809 10.1075/ts.00021.can 10.24963/ijcai.2020/559 10.18653/v1/D16-1025 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. COPYRIGHT 2023 Springer Copyright Springer Nature B.V. Sep 2023 |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: COPYRIGHT 2023 Springer – notice: Copyright Springer Nature B.V. Sep 2023 |
| DBID | AAYXX CITATION 3V. 7SC 7T9 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL ABUWG AFKRA ALSLI ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU CNYFK DWQXO E3H F2A FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M1O P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PRQQA PSYQQ Q9U |
| DOI | 10.1007/s10462-023-10423-5 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Linguistics and Language Behavior Abstracts (LLBA) ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland Social Science Premium Collection Advanced Technologies & Aerospace Database (1962 - current) ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College Library & Information Science Collection ProQuest Central Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM global Computing Database Library Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Social Sciences One Psychology ProQuest Central Basic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) ProQuest One Psychology Computer Science Database ProQuest Central Student Library and Information Science Abstracts (LISA) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences Library & Information Science Collection ProQuest Central (New) Advanced Technologies & Aerospace Collection Business Premium Collection Social Science Premium Collection ABI/INFORM Global ProQuest One Academic Eastern Edition Linguistics and Language Behavior Abstracts (LLBA) ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Library Science ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ProQuest One Social Sciences ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-7462 |
| EndPage | 10226 |
| ExternalDocumentID | A757724738 10_1007_s10462_023_10423_5 |
| GrantInformation_xml | – fundername: Macau University of Science and Technology grantid: FRG-22-020-FI funderid: http://dx.doi.org/10.13039/501100015260 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 23N 28- 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6J9 6NX 77K 7WY 8AO 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AAHNG AAIAL AAJKR AAJSJ AAKKN AANZL AAOBN AARHV AARTL AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABEEZ ABFTD ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABKTR ABMNI ABMOR ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACACY ACBXY ACGFS ACHSB ACHXU ACIHN ACKNC ACMDZ ACMLO ACOKC ACOMO ACREN ACSNA ACULB ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFGXO AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALSLI ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ C24 C6C CAG CCPQU CNYFK COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAO IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M1O M4Y MA- MK~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PSYQQ PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~A9 ~EX 77I AAFWJ AASML AAYXX ABDBE ABFSG ACSTC ADHKG AEZWR AFFHD AFHIU AGQPQ AHPBZ AHWEU AIXLP AYFIA CITATION ICD PHGZM PHGZT PQGLB PRQQA 7SC 7T9 7XB 8AL 8FD 8FK E3H F2A JQ2 L.- L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c358t-16657a51bae880e6fe35cc55de60486a23a331531fb0c9680f61391d764899a93 |
| IEDL.DBID | 7WY |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000937654900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0269-2821 |
| IngestDate | Sat Nov 08 02:34:13 EST 2025 Sat Nov 29 10:28:19 EST 2025 Tue Nov 18 22:07:49 EST 2025 Sat Nov 29 02:43:27 EST 2025 Fri Feb 21 02:41:56 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | Evaluation methods Computational linguistics Statistical machine translation Neural machine translation Natural Language Processing |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c358t-16657a51bae880e6fe35cc55de60486a23a331531fb0c9680f61391d764899a93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0008-7797 |
| PQID | 2838879636 |
| PQPubID | 36790 |
| PageCount | 90 |
| ParticipantIDs | proquest_journals_2838879636 gale_infotracacademiconefile_A757724738 crossref_citationtrail_10_1007_s10462_023_10423_5 crossref_primary_10_1007_s10462_023_10423_5 springer_journals_10_1007_s10462_023_10423_5 |
| PublicationCentury | 2000 |
| PublicationDate | 20230900 2023-09-00 20230901 |
| PublicationDateYYYYMMDD | 2023-09-01 |
| PublicationDate_xml | – month: 9 year: 2023 text: 20230900 |
| PublicationDecade | 2020 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationSubtitle | An International Science and Engineering Journal |
| PublicationTitle | The Artificial intelligence review |
| PublicationTitleAbbrev | Artif Intell Rev |
| PublicationYear | 2023 |
| Publisher | Springer Netherlands Springer Springer Nature B.V |
| Publisher_xml | – name: Springer Netherlands – name: Springer – name: Springer Nature B.V |
| References | ShieberSMSchabesYGeneration and synchronous tree-adjoining grammarsComputational Intelligence199174220228 Koehn P, Och FJ, Marcu D (2003) Statistical phrase-based translation. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology-Volume 1, Association for Computational Linguistics, pp 48–54 ÁlvaroRochaAdeliHReisLPCostanzoSTrends and Advances in Information Systems and Technologies2018Springer Abid A, Farooqi M, Zou J (2021) Persistent anti-muslim bias in large language models. In: Proceedings of the 2021 AAAI/ACM conference on AI, Ethics, and Society, pp 298–306 ZakirHMNagoorMSA Brief Study of Challenges in Machine TranslationInt J Comput Sci Issues (IJCSI)201714254 Yang B, Wang L, Wong DF, Chao LS, Tu Z (2019) Convolutional Self-Attention Networks. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp 4040–4045 Yun Huang QL Yang Liu (2008) Introduction on machine translation evaluation Karim R (2019) Illustrated attention. https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3. Accessed 08 Apr 2022 Kaljahi RSZ, Rubino R, Roturier J, Foster J, Park BB (2012) A detailed analysis of phrase-based and syntax-based machine translation: The search for systematic differences. In: Proceedings of AMTA Koehn P, Chiang D (2019) Special interest group of machine translation. http://www.sigmt.org. Accessed 08 Apr 2022 SomersHRound-trip translation: What is it good for?Proceedings of the Australasian Language Technology Workshop20052005127133 Shieber SM, Schabes Y (1990) Synchronous tree-adjoining grammars. In: Proceedings of the 13th conference on Computational linguistics-Volume 3, pp 253–258 Bapna A, Firat O, Wang P, Macherey W, Cheng Y, Cao Y (2022) Multilingual Mix: Example Interpolation Improves Multilingual Neural Machine Translation. In: ACL 2022 United Nations Parallel Corpus (2022) https://conferences.unite.un.org/uncorpus. Accessed 30 Sep 2022 Stanovsky G, Smith NA, Zettlemoyer L (2019) Evaluating gender bias in machine translation. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Association for Computational Linguistics, Florence, Italy, pp 1679–1684, https://doi.org/10.18653/v1/P19-1164, https://aclanthology.org/P19-1164 Mueller V (2022) An introduction to synchronous grammars. Tutorial https://medium.com/towards-data-science/attention-please-85bd0abac41. Accessed 05 Apr 2022 VandeghinsteVMartensSKotzéGTiedemannJVan den BogaertJDe SmetKVan EyndeFVan NoordGParse and corpus-based machine translationEssential Speech and Language Technology for Dutch2013Berlin, HeidelbergSpringer305319 Meng F, Lu Z, Li H, Liu Q (2016) Interactive attention for neural machine translation. arXiv preprint arXiv:1610.05011 Wikimatrix (2022) Mining 135m parallel sentences in 1620 language pairs from wikipedia. https://github.com/facebookresearch/LASER/tree/main/tasks/WikiMatrix. Accessed 30 Sep 2022 Cheng Y, Jiang L, Macherey W, Eisenstein J (2020) AdvAug: Robust Adversarial Augmentation for Neural Machine Translation. In: ACL, https://arxiv.org/abs/2006.11834 Esplà-Gomis M, Forcada ML, Ramírez-Sánchez G, Hoang H (2019) ParaCrawl: Web-scale parallel corpora for the languages of the EU. In: Proceedings of Machine Translation Summit XVII: Translator, Project and User Tracks, pp 118–119 Chiang D, Knight K (2006) An introduction to synchronous grammars. Tutorial https://www3.nd.edu/~dchiang/papers/synchtut.pdf. Accessed 4 Jan 2022 Staudemeyer RC, Morris ER (2019) Understanding LSTM–a tutorial into long short-term memory recurrent neural networks. arXiv preprint arXiv:1909.09586 WuHWangHPivot language approach for phrase-based statistical machine translationMachine Translation2007213165181 Colah (2015) Understanding LSTM networks. http://colah.github.io/posts/2015-08-Understanding-LSTMs/. Accessed 08 Apr 2022 KlakowDPetersJTesting the correlation of word error rate and perplexitySpeech Communication2002381–219281005.68806 LiYXiongDZhangMA survey of neural machine translationChinese Journal of Computers20181227343931919 Jian Zhang MZ Ji Wu (2003) The improvement of automatic machine translation evaluation. J Chin Inf Process 17(6):2, http://jcip.cipsc.org.cn/CN/abstract/article_1823.shtml Sennrich R, Haddow B, Birch A (2015) Improving neural machine translation models with monolingual data. arXiv preprint arXiv:1511.06709 WahlerMEA word is worth a thousand words: Legal implications of relying on machine translation technologyStetson L Rev201848109 Rebele T, Suchanek F, Hoffart J, Biega J, Kuzey E, Weikum G (2016) YAGO: A multilingual knowledge base from wikipedia, wordnet, and geonames. In: International semantic web conference, Springer, pp 177–185 DempsterAPLairdNMRubinDBMaximum likelihood from incomplete data via the EM algorithmJournal of the Royal Statistical Society: Series B (Methodological)19773911225015370364.62022 Rescigno AA, Vanmassenhove E, Monti J, Way A (2020) A case study of natural gender phenomena in translation. A comparison of Google Translate, Bing Microsoft Translator and DeepL for English to Italian, French and Spanish. In: CLiC-it BrownPFPietraVJDPietraSADMercerRLThe mathematics of statistical machine translation: Parameter estimationComputational linguistics1993192263311 Ullmann S (2022) Gender bias in machine translation systems. In: Artificial Intelligence and Its Discontents, Springer, pp 123–144 Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I (2017) Attention is all you need. Adv Neural Inf Process Syst 30:1 Ahmed A, Hanneman G (2005) Syntax-based statistical machine translation: a review. Comput Linguist 1:1 PapadimitriouCHComputational complexity2003John Wiley and Sons Ltd0557.68033 Bender EM (2019) A typology of ethical risks in language technology with an eye towards where transparent documentation can help. In: Future of artificial intelligence: language, ethics, technology workshop Koehn P (2009) Statistical Machine Translation Lecture 5 Syntax-Based Models. Cambridge University Press, Cambridge. Accessed 08 Apr 2022 SchusterMPaliwalKKBidirectional recurrent neural networksIEEE Transactions on Signal Processing1997451126732681 IslamMAnikMHoqueSIslamATowards achieving a delicate blending between rule-based translator and neural machine translatorNeural Computing and Applications202133181214112167 Bouchard G (2007) Efficient bounds for the softmax function and applications to approximate inference in hybrid models. In: NIPS 2007 workshop for approximate Bayesian inference in continuous/hybrid systems Luong MT, Sutskever I, Le QV, Vinyals O, Zaremba W (2014) Addressing the rare word problem in neural machine translation. arXiv preprint arXiv:1410.8206 Tixier AJP (2018) Notes on deep learning for nlp. arXiv preprint arXiv:1808.09772 ACL (2022) ACL 2014 NINTH WORKSHOP ON STATISTICAL MACHINE TRANSLATION. Available at https://www.statmt.org/wmt14/translation-task.html. Accessed 05 Apr 2022 Ko WJ, El-Kishky A, Renduchintala A, Chaudhary V, Goyal N, Guzmán F, Fung P, Koehn P, Diab M (2021) Adapting high-resource NMT models to translate low-resource related languages without parallel data. arXiv preprint arXiv:2105.15071 Koehn P (2009) Chapter 4 Word-based models - Statistical Machine Translation. Cambridge University Press, Cambridge. Accessed 08 Apr 2022 Dabre R, Cromieres F, Kurohashi S, Bhattacharyya P (2015) Leveraging small multilingual corpora for smt using many pivot languages. In: Proceedings of the 2015 conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 1192–1202 Cui Y, Chen Z, Wei S, Wang S, Liu T, Hu G (2016) Attention-over-attention neural networks for reading comprehension. arXiv preprint arXiv:1607.04423 PratesMOAvelarPHLambLCAssessing gender bias in machine translation: a case study with google translateNeural Computing and Applications2020321063636381 Ravikumar D, Kodge S, Garg I, Roy K (2020) Exploring Vicinal Risk Minimization for Lightweight Out-of-Distribution Detection. arXiv preprint arXiv:2012.08398 FärberMEllBMenneCRettingerAA comparative survey of dbpedia, freebase, opencyc, wikidata, and yagoSemantic Web Journal20151115 Gehring J, Auli M, Grangier D, Yarats D, Dauphin YN (2017) Convolutional sequence to sequence learning. In: Proceedings of the 34th International Conference on Machine Learning-Volume 70, JMLR. org, pp 1243–1252 Wu Y, Schuster M, Chen Z, Le QV, Norouzi M, Macherey W, Krikun M, Cao Y, Gao Q, Macherey K et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:1609.08144 Lin CY (2004) Rouge: A package for automatic evaluation of summaries. In: Text summarization branches out, pp 74–81 Bick E (2007) Dan2eng: wide-coverage Danish-English machine translation. In: Proceedings of Machine Translation Summit XI: Papers Costa-JussaMRFonollosaJALatest trends in hybrid machine translation and its applicationsComput Speech Lang2015321310 PalSKMitraSMultilayer perceptron, fuzzy sets, and classificationIEEE Transactions on neural networks199235683697 Moon J, Cho H, Park EL (2020) Revisiting round-trip translation for quality estimation. arXiv preprint arXiv:2004.13937 Rocktäschel T, Grefenstette E, Hermann KM, Kočiskỳ T, Blunsom P (2015) Reasoning about entailment with neural attention. arXiv preprint arXiv:1509.06664 Common Crawl corpus (2022) https://commoncrawl.org/. Accessed 30 Sep 2022 Ramnath S, Johnson M, Gupta A, Raghuveer A (2021) HintedBT: Augmenting Back-Translation with Quality and Transliteration Hints. In: EMNLP 2021 AhmadniaBSerranoJHaffariGPersian-Spanish low-resource statistical machine translation through English as pivot languageProceedings of the International Conference Recent Advances in Natural Language Processing, RANLP201720172430 Steinberger R, Pouliquen B, Widige 10423_CR159 FJ Och (10423_CR121) 2003; 29 J Zhou (10423_CR201) 2016; 4 10423_CR154 10423_CR157 10423_CR156 10423_CR151 10423_CR153 ME Wahler (10423_CR179) 2018; 48 10423_CR152 S Wang (10423_CR180) 2005; 81 10423_CR147 10423_CR144 10423_CR143 10423_CR146 10423_CR140 10423_CR142 Y Li (10423_CR98) 2018; 12 10423_CR177 10423_CR173 A Sakamoto (10423_CR145) 2019; 27 10423_CR175 10423_CR174 10423_CR171 10423_CR170 SM Shieber (10423_CR158) 1991; 7 L Schiebinger (10423_CR149) 2014; 507 C Richards (10423_CR141) 2016; 28 10423_CR169 10423_CR166 10423_CR165 10423_CR168 O Furuse (10423_CR54) 1992; 1992 10423_CR167 10423_CR162 10423_CR164 10423_CR163 B Ahmadnia (10423_CR8) 2020; 21 10423_CR160 LN Vieira (10423_CR178) 2021; 24 D Wu (10423_CR188) 1997; 23 B Ahmadnia (10423_CR7) 2019; 17 G Labaka (10423_CR95) 2014; 28 10423_CR99 10423_CR9 10423_CR199 10423_CR198 10423_CR92 10423_CR195 10423_CR91 10423_CR194 10423_CR94 10423_CR93 10423_CR196 10423_CR96 10423_CR191 10423_CR190 10423_CR193 10423_CR97 AP Dempster (10423_CR46) 1977; 39 10423_CR90 10423_CR89 10423_CR88 B Ahmadnia (10423_CR5) 2019; 9 10423_CR187 10423_CR184 10423_CR80 10423_CR183 10423_CR186 10423_CR82 10423_CR185 H Wu (10423_CR189) 2007; 21 10423_CR85 10423_CR84 10423_CR87 10423_CR182 10423_CR181 10423_CR2 10423_CR3 10423_CR1 10423_CR4 J Liu (10423_CR103) 2020; 10 10423_CR78 10423_CR77 10423_CR79 B Savoldi (10423_CR148) 2021; 9 M Färber (10423_CR55) 2015; 1 10423_CR70 10423_CR74 10423_CR73 10423_CR76 10423_CR75 X Liu (10423_CR105) 2021; 29 PF Brown (10423_CR23) 1993; 19 10423_CR69 10423_CR68 S Sharma (10423_CR155) 2017; 6 10423_CR61 10423_CR60 10423_CR63 10423_CR62 N Casas (10423_CR26) 2021; 27 10423_CR65 M Islam (10423_CR72) 2021; 33 10423_CR64 Rocha Álvaro (10423_CR10) 2018 M Tomalin (10423_CR172) 2021; 23 10423_CR56 10423_CR58 10423_CR57 10423_CR59 ML Forcada (10423_CR52) 2011; 25 10423_CR50 10423_CR51 DC Hill (10423_CR66) 2022; 1 10423_CR53 I Horváth (10423_CR67) 2022; 23 CH Papadimitriou (10423_CR128) 2003 10423_CR45 10423_CR44 10423_CR47 10423_CR49 10423_CR48 10423_CR41 10423_CR40 10423_CR43 10423_CR42 MR Costa-Jussa (10423_CR39) 2015; 32 MO Prates (10423_CR133) 2020; 32 10423_CR34 10423_CR33 10423_CR36 10423_CR35 10423_CR38 10423_CR37 10423_CR30 10423_CR32 10423_CR31 SK Pal (10423_CR127) 1992; 3 M Yamada (10423_CR192) 2019; 31 10423_CR203 10423_CR22 MP Marcus (10423_CR111) 1993; 19 10423_CR202 10423_CR24 10423_CR204 10423_CR27 10423_CR29 10423_CR28 10423_CR200 10423_CR21 10423_CR20 P Koehn (10423_CR86) 2009 TK Moon (10423_CR114) 1996; 13 10423_CR19 10423_CR12 10423_CR115 10423_CR11 10423_CR14 10423_CR117 10423_CR13 10423_CR16 D Klakow (10423_CR83) 2002; 38 10423_CR110 10423_CR18 10423_CR113 10423_CR17 10423_CR112 J Moorkens (10423_CR116) 2022; 18 R Barzilay (10423_CR15) 2004 10423_CR108 10423_CR107 10423_CR109 10423_CR104 10423_CR106 10423_CR100 10423_CR102 10423_CR101 H Somers (10423_CR161) 2005; 2005 D Kenny (10423_CR81) 2020; 9 HM Zakir (10423_CR197) 2017; 14 B Ahmadnia (10423_CR6) 2017; 2017 10423_CR137 10423_CR136 10423_CR139 10423_CR138 10423_CR132 10423_CR134 10423_CR131 JE Ortega (10423_CR126) 2020; 34 10423_CR130 M Schuster (10423_CR150) 1997; 45 C Canfora (10423_CR25) 2020; 9 10423_CR129 10423_CR125 10423_CR122 10423_CR124 10423_CR123 10423_CR120 V Vandeghinste (10423_CR176) 2013 C Raffel (10423_CR135) 2020; 21 10423_CR119 10423_CR118 A Imankulova (10423_CR71) 2019; 19 |
| References_xml | – reference: Och FJ, Tillmann C, Ney H (1999) Improved alignment models for statistical machine translation. In: 1999 Joint SIGDAT Conference on Empirical Methods in Natural Language Processing and Very Large Corpora – reference: Sun T, Gaut A, Tang S, Huang Y, ElSherief M, Zhao J, Mirza D, Belding E, Chang KW, Wang WY (2019) Mitigating gender bias in natural language processing: literature review. In: Proceedings of the 57th annual meeting of the Association for Computational Linguistics, pp 1630–1640 – reference: PalSKMitraSMultilayer perceptron, fuzzy sets, and classificationIEEE Transactions on neural networks199235683697 – reference: Cheng Y, Jiang L, Macherey W, Eisenstein J (2020) AdvAug: Robust Adversarial Augmentation for Neural Machine Translation. In: ACL, https://arxiv.org/abs/2006.11834 – reference: Koehn P (2009) Statistical Machine Translation Lecture 6 Decoding. Cambridge University Press, Cambridge. Accessed 08 Apr 2022 – reference: SakamotoAUnintended consequences of translation technologies: from project managers’ perspectivesPerspectives20192715873 – reference: Hecht-Nielsen R (1992) Theory of the backpropagation neural network. In: Neural networks for perception, Elsevier, pp 65–93 – reference: Jehl L, Simianer P, HIrschler J, Riezler S (2015) The Heidelberg university English-German translation system for IWSLT 2015. In: Proceedings of the 12th International Workshop on Spoken Language Translation: Evaluation Campaign – reference: Sara Stymne GT (2022) Phrase Based Machine Translation. Tutorial https://cl.lingfil.uu.se/kurs/MT19/slides/pbsmt.pdf. Accessed 05 Apr 2022 – reference: Cho K, Van Merriënboer B, Bahdanau D, Bengio Y (2014b) On the properties of neural machine translation: encoder-decoder approaches. arXiv preprint arXiv:1409.1259 – reference: Liu CH, Silva CC, Wang L, Way A (2018) Pivot machine translation using chinese as pivot language. In: China workshop on machine translation. Springer, Berlin. pp 74–85 – reference: Saunders D, Sallis R, Byrne B (2020) Neural machine translation doesn’t translate gender coreference right unless you make it. In: Proceedings of the second workshop on gender bias in natural language processing, pp 35–43 – reference: SavoldiBGaidoMBentivogliLNegriMTurchiMGender bias in machine translationTransactions of the Association for Computational Linguistics20219845874 – reference: Cui Y, Chen Z, Wei S, Wang S, Liu T, Hu G (2016) Attention-over-attention neural networks for reading comprehension. arXiv preprint arXiv:1607.04423 – reference: AhmadniaBDorrBJKordjamshidiPKnowledge graphs effectiveness in neural machine translation improvementComputer Science202021299318 – reference: Council NR (1416) Language and Machines: Computers in Translation and Linguistics; a Report. National Research Council, https://books.google.com/books?hl=zh-CN &lr= &id=Q0ErAAAAYAAJ &oi=fnd &pg=PA1 &dq=Languages+and+machines:+computers+in+translation+and+linguistics &ots=NgytafcXa- &sig=Hc733OYAAT89yd4U-3xLdh77gEM#v=onepage &q &f=false. Accessed 08 Apr 2022 – reference: ShieberSMSchabesYGeneration and synchronous tree-adjoining grammarsComputational Intelligence199174220228 – reference: Cho K, Van Merriënboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H, Bengio Y (2014a) Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 – reference: Lu Y, Zhang J, Zong C (2018) Exploiting knowledge graph in neural machine translation. In: China workshop on machine translation. Springer, Berlin. pp 27–38 – reference: Och FJ, Ueffing N, Ney H (2001) An efficient A* search algorithm for statistical machine translation. In: Proceedings of the workshop on Data-driven methods in machine translation-Volume 14, Association for Computational Linguistics, pp 1–8 – reference: Toma P (1977) Systran as a multilingual machine translation system. In: Proceedings of the Third European Congress on Information Systems and Networks, overcoming the language barrier, pp 569–581 – reference: Yang B, Wang L, Wong DF, Chao LS, Tu Z (2019) Convolutional Self-Attention Networks. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp 4040–4045 – reference: Nyberg EH, Mitamura T (1992) The KANT system: Fast, accurate, high-quality translation in practical domains. In: Proceedings of the 14th conference on Computational linguistics-Volume 3, Association for Computational Linguistics, pp 1069–1073 – reference: Wiki (2019) Automatic Language Processing Advisory Committee. https://en.wikipedia.org/wiki/ALPAC. Accessed 08 Apr 2022 – reference: Och FJ, Gildea D, Khudanpur S, Sarkar A, Yamada K, Fraser A, Kumar S, Shen L, Smith D, Eng K et al (2003) Syntax for statistical machine translation. In: Johns Hopkins University 2003 Summer Workshop on Language Engineering, Center for Language and Speech Processing, Baltimore, MD, Tech. Rep – reference: MoorkensJEthics and machine translationMachine translation for everyone: Empowering users in the age of artificial intelligence202218121 – reference: Freitag M, Torres DV, Grangier D, Cherry C, Foster G (2022) A Natural Diet: Towards Improving Naturalness of Machine Translation Output. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics, Online – reference: Bouchard G (2007) Efficient bounds for the softmax function and applications to approximate inference in hybrid models. In: NIPS 2007 workshop for approximate Bayesian inference in continuous/hybrid systems – reference: Lin CY, Hovy E (2003) Automatic evaluation of summaries using n-gram co-occurrence statistics. In: Proceedings of the 2003 human language technology conference of the North American chapter of the association for computational linguistics, pp 150–157 – reference: van Wynsberghe A (2021) Sustainable AI: AI for sustainability and the sustainability of AI. AI Ethics (2021). https://doi.org/10.1007/s43681-021-00043-6 – reference: Zhang D, Li M, Li CH, Zhou M (2007) Phrase reordering model integrating syntactic knowledge for SMT. In: Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL), pp 533–540 – reference: Ziemski M, Junczys-Dowmunt M, Pouliquen B (2016) The united nations parallel corpus v1. 0. In: Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16), pp 3530–3534 – reference: Tixier AJP (2018) Notes on deep learning for nlp. arXiv preprint arXiv:1808.09772 – reference: Snover M, Dorr B, Schwartz R, Micciulla L, Makhoul J (2006) A study of translation edit rate with targeted human annotation. In: Proceedings of association for machine translation in the Americas, vol 200 – reference: SomersHRound-trip translation: What is it good for?Proceedings of the Australasian Language Technology Workshop20052005127133 – reference: Steinberger R, Pouliquen B, Widiger A, Ignat C, Erjavec T, Tufis D, Varga D (2006) The JRC-Acquis: A multilingual aligned parallel corpus with 20+ languages. arXiv preprint arXiv:cs/0609058 – reference: Wiki (2019) Long-short term memory. https://en.wikipedia.org/wiki/Long_short-term_memory. Accessed 08 Apr 2022 – reference: Cheng Y (2019) Joint training for pivot-based neural machine translation. In: Joint Training for Neural Machine Translation, Springer, pp 41–54 – reference: ImankulovaASatoTKomachiMFiltered pseudo-parallel corpus improves low-resource neural machine translationACM Transactions on Asian and Low-Resource Language Information Processing (TALLIP)2019192116 – reference: Besacier L, Blanchon H (2017) Comparing statistical machine translation and neural machine translation performances. https://evaluerlata.hypotheses.org/files/2017/07/Laurent-Besacier-NMTvsSMT.pdf, laboratoire LIG, Université Grenoble Alpes, France – reference: Habash N, Zalmout N, Taji D, Hoang H, Alzate M (2017) A Parallel Corpus for Evaluating Machine Translation between Arabic and European Languages. In: Proceedings of the 15th conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers, Association for Computational Linguistics, Valencia, Spain, pp 235–241. https://aclanthology.org/E17-2038 – reference: Lin CY (2004) Rouge: A package for automatic evaluation of summaries. In: Text summarization branches out, pp 74–81 – reference: Gheini M, Ren X, May J (2021a) Cross-attention is all you need: adapting pretrained transformers for machine translation. In: Proceedings of the 2021 conference on Empirical Methods in Natural Language Processing, pp 1754–1765 – reference: RaffelCShazeerNRobertsALeeKNarangSMatenaMZhouYLiWLiuPJExploring the limits of transfer learning with a unified text-to-text transformerJournal of Machine Learning Research202021167413812407255171 – reference: Lavie A, Sagae K, Jayaraman S (2004) The significance of recall in automatic metrics for MT evaluation. In: Conference of the Association for Machine Translation in the Americas, Springer, pp 134–143 – reference: Weidinger L, Mellor J, Rauh M, Griffin C, Uesato J, Huang PS, Cheng M, Glaese M, Balle B, Kasirzadeh A et al (2021) Ethical and social risks of harm from language models. arXiv preprint arXiv:2112.04359 – reference: IslamMAnikMHoqueSIslamATowards achieving a delicate blending between rule-based translator and neural machine translatorNeural Computing and Applications202133181214112167 – reference: Bollacker K, Evans C, Paritosh P, Sturge T, Taylor J (2008) Freebase: a collaboratively created graph database for structuring human knowledge. In: Proceedings of the 2008 ACM SIGMOD international conference on management of data, pp 1247–1250 – reference: ZhouJCaoYWangXLiPXuWDeep recurrent models with fast-forward connections for neural machine translationTransactions of the Association for Computational Linguistics20164371383 – reference: Luong MT, Sutskever I, Le QV, Vinyals O, Zaremba W (2014) Addressing the rare word problem in neural machine translation. arXiv preprint arXiv:1410.8206 – reference: Devlin J, Chang MW, Lee K, Toutanova K (2018) Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 – reference: Bentivogli L, Bisazza A, Cettolo M, Federico M (2016) Neural versus phrase-based machine translation quality: a case study. arXiv preprint arXiv:1608.04631 – reference: Bapna A, Firat O, Wang P, Macherey W, Cheng Y, Cao Y (2022) Multilingual Mix: Example Interpolation Improves Multilingual Neural Machine Translation. In: ACL 2022 – reference: WuHWangHPivot language approach for phrase-based statistical machine translationMachine Translation2007213165181 – reference: KlakowDPetersJTesting the correlation of word error rate and perplexitySpeech Communication2002381–219281005.68806 – reference: Stanovsky G, Smith NA, Zettlemoyer L (2019) Evaluating gender bias in machine translation. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Association for Computational Linguistics, Florence, Italy, pp 1679–1684, https://doi.org/10.18653/v1/P19-1164, https://aclanthology.org/P19-1164 – reference: Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I (2017) Attention is all you need. Adv Neural Inf Process Syst 30:1 – reference: Sutskever I, Vinyals O, Le QV (2014) Sequence to sequence learning with neural networks. In: Advances in neural information processing systems, pp 3104–3112 – reference: Dabre R, Imankulova A, Kaneko M, Chakrabarty A (2021) Simultaneous multi-pivot neural machine translation. arXiv preprint arXiv:2104.07410 – reference: Nießen S, Ney H (2000) Improving SMT quality with morpho-syntactic analysis. In: COLING 2000 Volume 2: the 18th international conference on computational linguistics – reference: Meng F, Lu Z, Li H, Liu Q (2016) Interactive attention for neural machine translation. arXiv preprint arXiv:1610.05011 – reference: VieiraLNO’HaganMO’SullivanCUnderstanding the societal impacts of machine translation: a critical review of the literature on medical and legal use casesInformation, Communication & Society2021241115151532 – reference: Moon J, Cho H, Park EL (2020) Revisiting round-trip translation for quality estimation. arXiv preprint arXiv:2004.13937 – reference: OrtegaJECastro MamaniRChoKNeural machine translation with a polysynthetic low resource languageMachine Translation2020344325346 – reference: WangSComputers and Translation: A Translator’s GuideLanguage2005812544545 – reference: Huck M, Birch A (2015) The Edinburgh machine translation systems for IWSLT 2015. In: Proceedings of the 12th International Workshop on Spoken Language Translation: Evaluation Campaign – reference: Sennrich R, Haddow B, Birch A (2015) Improving neural machine translation models with monolingual data. arXiv preprint arXiv:1511.06709 – reference: Kalchbrenner N, Espeholt L, Simonyan K, Oord Avd, Graves A, Kavukcuoglu K (2016) Neural machine translation in linear time. arXiv preprint arXiv:1610.10099 – reference: Jian Zhang MZ Ji Wu (2003) The improvement of automatic machine translation evaluation. J Chin Inf Process 17(6):2, http://jcip.cipsc.org.cn/CN/abstract/article_1823.shtml – reference: Dajun Z, Yun W (2015) Corpus-based machine translation: Its current development and perspectives. In: International Forum of Teaching and Studies, American Scholars Press, Inc., vol 11, p 90 – reference: KennyDMoorkensJDo CarmoFFair MT: Towards ethical, sustainable machine translationTranslation Spaces202091111 – reference: Koehn P, Chiang D (2019) Special interest group of machine translation. http://www.sigmt.org. Accessed 08 Apr 2022 – reference: Cheng Y, Jiang L, Macherey W (2019) Robust Neural Machine Translation with Doubly Adversarial Inputs. In: ACL – reference: Hull DA, Grefenstette G (1996) Querying across languages: a dictionary-based approach to multilingual information retrieval. In: Proceedings of the 19th annual international ACM SIGIR conference on Research and development in information retrieval, ACM, pp 49–57 – reference: CasasNCosta-jussàMRFonollosaJAAlonsoJAFanloRLinguistic knowledge-based vocabularies for Neural Machine TranslationNatural Language Engineering2021274485506 – reference: PratesMOAvelarPHLambLCAssessing gender bias in machine translation: a case study with google translateNeural Computing and Applications2020321063636381 – reference: Li Q, Zhang X, Xiong J, Hwu Wm, Chen D (2019) Implementing neural machine translation with bi-directional GRU and attention mechanism on FPGAs using HLS. In: Proceedings of the 24th Asia and South Pacific Design Automation Conference, pp 693–698 – reference: Of Standards NNI, Technology) (2010) Open Machine Translation Evaluation. https://www.nist.gov/itl/iad/mig/open-machine-translation-evaluation. Accessed 08 Apr 2022 – reference: AhmadniaBHaffariGSerranoJRound-trip training approach for bilingually low-resource statistical machine translation systemsInt J Artif Intell2019171167185 – reference: Ma S, Sun X, Wang Y, Lin J (2018) Bag-of-words as target for neural machine translation. arXiv preprint arXiv:1805.04871 – reference: Bahdanau D, Cho K, Bengio Y (2014) Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 – reference: Klein G, Kim Y, Deng Y, Senellart J, Rush AM (2017) Opennmt: Open-source toolkit for neural machine translation. arXiv preprint arXiv:1701.02810 – reference: RichardsCBoumanWPSealLBarkerMJNiederTOT’SjoenGNon-binary or genderqueer gendersInternational Review of Psychiatry201628195102 – reference: Doddington G (2002) Automatic evaluation of machine translation quality using n-gram co-occurrence statistics. In: Proceedings of the second international conference on Human Language Technology Research, Morgan Kaufmann Publishers Inc., pp 138–145 – reference: Mueller V (2022) An introduction to synchronous grammars. Tutorial https://medium.com/towards-data-science/attention-please-85bd0abac41. Accessed 05 Apr 2022 – reference: Yang Z, Yang D, Dyer C, He X, Smola A, Hovy E (2016) Hierarchical attention networks for document classification. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 1480–1489 – reference: Edunov S, Ott M, Auli M, Grangier D (2018) Understanding back-translation at scale. arXiv preprint arXiv:1808.09381 – reference: Wu Y, Schuster M, Chen Z, Le QV, Norouzi M, Macherey W, Krikun M, Cao Y, Gao Q, Macherey K et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:1609.08144 – reference: HorváthIAI in interpreting: Ethical considerationsAcross Lang Cult2022231113 – reference: Chiang D, Knight K (2006) An introduction to synchronous grammars. Tutorial https://www3.nd.edu/~dchiang/papers/synchtut.pdf. Accessed 4 Jan 2022 – reference: Luong MT, Pham H, Manning CD (2015) Effective Approaches to Attention-based Neural Machine Translation. In: Proceedings of the 2015 conference on Empirical Methods in Natural Language Processing, pp 1412–1421 – reference: Zollmann A, Venugopal A, Och FJ, Ponte J (2008) A Systematic Comparison of Phrase-Based, Hierarchical and Syntax-Augmented Statistical MT. In: Proceedings of the 22nd International Conference on Computational Linguistics (Coling 2008), pp 1145–1152 – reference: Chah N (2018) OK Google, what is your ontology? Or: exploring freebase classification to understand Google’s Knowledge Graph. arXiv preprint arXiv:1805.03885 – reference: Zhao Y, Xiang L, Zhu J, Zhang J, Zhou Y, Zong C (2020) Knowledge graph enhanced neural machine translation via multi-task learning on sub-entity granularity. In: Proceedings of the 28th International Conference on Computational Linguistics, pp 4495–4505 – reference: Europarl (2022) Europarl: European Parliament Proceedings Parallel Corpus. https://www.statmt.org/europarl/. Accessed 30 Sep 2022 – reference: Hardmeier C (2012) Discourse in statistical machine translation. a survey and a case study. Discours Revue de linguistique, psycholinguistique et informatique A journal of linguistics, psycholinguistics and computational linguistics (11) – reference: Luccioni A, Viviano J (2021) What’s in the box? an analysis of undesirable content in the Common Crawl corpus. In: Proceedings of the 59th annual meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers), pp 182–189 – reference: LabakaGEspaña-BonetCMàrquezLSarasolaKA hybrid machine translation architecture guided by syntaxMachine translation201428291125 – reference: Abid A, Farooqi M, Zou J (2021) Persistent anti-muslim bias in large language models. In: Proceedings of the 2021 AAAI/ACM conference on AI, Ethics, and Society, pp 298–306 – reference: LiuJComparing and Analyzing Cohesive Devices of SMT and NMT from Chinese to English: A Diachronic ApproachOpen Journal of Modern Linguistics2020106765772 – reference: Gispert Ramis A (2007) Introducing linguistic knowledge into statistical machine translation. Universitat Politècnica de Catalunya – reference: WahlerMEA word is worth a thousand words: Legal implications of relying on machine translation technologyStetson L Rev201848109 – reference: Ramnath S, Johnson M, Gupta A, Raghuveer A (2021) HintedBT: Augmenting Back-Translation with Quality and Transliteration Hints. In: EMNLP 2021 – reference: WuDStochastic inversion transduction grammars and bilingual parsing of parallel corporaComputational linguistics1997233377403 – reference: Ringler D, Paulheim H (2017) One knowledge graph to rule them all? Analyzing the differences between DBpedia, YAGO, Wikidata & co. In: Joint German/Austrian Conference on Artificial Intelligence (Künstliche Intelligenz), Springer, pp 366–372 – reference: Pryzant R, Chung Y, Jurafsky D, Britz D (2018) JESC: Japanese-English Subtitle Corpus. In: Proceedings of the eleventh International Conference on Language Resources and Evaluation (LREC 2018) – reference: Xu K, Ba J, Kiros R, Cho K, Courville A, Salakhudinov R, Zemel R, Bengio Y (2015) Show, attend and tell: Neural image caption generation with visual attention. In: International conference on machine learning, pp 2048–2057 – reference: YamadaMThe impact of Google Neural Machine Translation on Post-editing by student translatorsThe Journal of Specialised Translation20193187106 – reference: SharmaSSharmaSAthaiyaAActivation functions in neural networkstowards data science2017612310316 – reference: Kharitonova K (2021) Linguistics4fairness: neutralizing Gender Bias in neural machine translation by introducing linguistic knowledge. Master’s thesis, Universitat Politècnica de Catalunya – reference: White JS (1995) Approaches to black box MT evaluation. Citeseer, proceedings of machine translation summit V, vol 10 – reference: HillDCGombayCSanchezOWoappiBRomero VélezASDavidsonSRichardsonEZLost in machine translation: The promises and pitfalls of machine translation for multilingual group work in global health educationDiscover Education20221115 – reference: Yamada K, Knight K (2001) A syntax-based statistical translation model. In: Proceedings of the 39th annual meeting of the Association for Computational Linguistics, pp 523–530 – reference: Jurafsky D, Martin JH (2022) Speech and language processing: an introduction to natural language processing, computational linguistics, and speech recognition, chapter 10: machine translation and encoder-decoder models, 10.9 Bias and Ethical Issues (3rd (draft) ed.). Accessed on 08 Apr 2022 – reference: Ahmed A, Hanneman G (2005) Syntax-based statistical machine translation: a review. Comput Linguist 1:1 – reference: AhmadniaBDorrBJAugmenting neural machine translation through round-trip training approachOpen Computer Science201991268278 – reference: Buck C, Heafield K, Van Ooyen B (2014) N-gram counts and language models from the common crawl. In: Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC’14), pp 3579–3584 – reference: Shannon CE, Weaver W (1949) The mathematical theory of information. University of Illinois Press – reference: United Nations Parallel Corpus (2022) https://conferences.unite.un.org/uncorpus. Accessed 30 Sep 2022 – reference: Yun Huang QL Yang Liu (2008) Introduction on machine translation evaluation – reference: Pierce J (1966) Language and machines: computers in translation and linguistics; a Report. National Research Council – reference: Rescigno AA, Vanmassenhove E, Monti J, Way A (2020) A case study of natural gender phenomena in translation. A comparison of Google Translate, Bing Microsoft Translator and DeepL for English to Italian, French and Spanish. In: CLiC-it – reference: Ko WJ, El-Kishky A, Renduchintala A, Chaudhary V, Goyal N, Guzmán F, Fung P, Koehn P, Diab M (2021) Adapting high-resource NMT models to translate low-resource related languages without parallel data. arXiv preprint arXiv:2105.15071 – reference: Johnson M (2020) A scalable approach to reducing gender bias in Google translate, https://ai.googleblog.com/2020/04/a-scalable-approach-to-reducing-gender.html. Google AI Blog Accessed on 30 Sep 2022 – reference: MoonTKThe expectation-maximization algorithmIEEE Signal processing magazine19961364760 – reference: TomalinMByrneBConcannonSSaundersDUllmannSThe practical ethics of bias reduction in machine translation: why domain adaptation is better than data debiasingEthics and Information Technology2021233419433 – reference: Shazeer N, Mirhoseini A, Maziarz K, Davis A, Le Q, Hinton G, Dean J (2017) Outrageously large neural networks: the sparsely-gated mixture-of-experts layer. arXiv preprint arXiv:1701.06538 – reference: Esplà-Gomis M, Forcada ML, Ramírez-Sánchez G, Hoang H (2019) ParaCrawl: Web-scale parallel corpora for the languages of the EU. In: Proceedings of Machine Translation Summit XVII: Translator, Project and User Tracks, pp 118–119 – reference: Koehn P, Hoang H, Birch A, Callison-Burch C, Federico M, Bertoldi N, Cowan B, Shen W, Moran C, Zens R et al (2007) Moses: Open source toolkit for statistical machine translation. In: Proceedings of the 45th annual meeting of the association for computational linguistics companion volume proceedings of the demo and poster sessions, pp 177–180 – reference: Lin CY, Och FJ (2004) Automatic evaluation of machine translation quality using longest common subsequence and skip-bigram statistics. In: Proceedings of the 42nd Annual Meeting of the Association for Computational Linguistics (ACL-04), pp 605–612 – reference: Corbí-Bellot AM, Forcada ML, Ortiz-Rojas S, Pérez-Ortiz JA, Ramírez-Sánchez G, Sánchez-Martínez F, Alegria I, Mayor A, Sarasola K (2005) An open-source shallow-transfer machine translation engine for the Romance languages of Spain. In: Proceedings of the 10th EAMT conference: practical applications of machine translation – reference: Wikimatrix (2022) Mining 135m parallel sentences in 1620 language pairs from wikipedia. https://github.com/facebookresearch/LASER/tree/main/tasks/WikiMatrix. Accessed 30 Sep 2022 – reference: Common Crawl corpus (2022) https://commoncrawl.org/. Accessed 30 Sep 2022 – reference: SchusterMPaliwalKKBidirectional recurrent neural networksIEEE Transactions on Signal Processing1997451126732681 – reference: Papineni K, Roukos S, Ward T, Zhu WJ (2002) BLEU: a method for automatic evaluation of machine translation. In: Proceedings of the 40th annual meeting on association for computational linguistics, Association for Computational Linguistics, pp 311–318 – reference: ParaCrwal (2022) ParaCrawl: Web-scale parallel corpora for the languages of the EU. https://paracrawl.eu/. Accessed 30 Sep 2022 – reference: FuruseOIidaHAn example-based method for transfer-driven machine translationTMI19921992139150 – reference: LiuXWangYWangXXuHLiCXinXBi-directional gated recurrent unit neural network based nonlinear equalizer for coherent optical communication systemOptics Express202129459235933 – reference: Zhou W, Ge T, Mu C, Xu K, Wei F, Zhou M (2019) Improving grammatical error correction with machine translation pairs. arXiv preprint arXiv:1911.02825 – reference: Popović M (2017) chrF++: words helping character n-grams. In: Proceedings of the second conference on machine translation, pp 612–618 – reference: Rothman D (2021) Transformers for Natural Language Processing: build innovative deep neural network architectures for NLP with Python, PyTorch, TensorFlow, BERT, RoBERTa, and more. Packt Publishing Ltd – reference: ACL (2022) ACL 2014 NINTH WORKSHOP ON STATISTICAL MACHINE TRANSLATION. Available at https://www.statmt.org/wmt14/translation-task.html. Accessed 05 Apr 2022 – reference: ACL 2015 NINTH WORKSHOP ON STATISTICAL MACHINE TRANSLATION (2022) https://www.statmt.org/wmt15/translation-task.html. Accessed 05 Apr 2022 – reference: Benesty J, Chen J, Huang Y, Cohen I (2009) Pearson correlation coefficient. In: Noise reduction in speech processing, Springer, pp 1–4 – reference: Sennrich R, Haddow B, Birch A (2015) Neural machine translation of rare words with subword units. arXiv preprint arXiv:1508.07909 – reference: Bender EM (2019) A typology of ethical risks in language technology with an eye towards where transparent documentation can help. In: Future of artificial intelligence: language, ethics, technology workshop – reference: Wong YW, Mooney R (2007) Learning synchronous grammars for semantic parsing with lambda calculus. In: Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics, pp 960–967 – reference: Currey A, Heafield K (2019) Zero-resource neural machine translation with monolingual pivot data. In: Proceedings of the 3rd workshop on neural generation and translation, pp 99–107 – reference: ForcadaMLGinestí-RosellMNordfalkJO’ReganJOrtiz-RojasSPérez-OrtizJASánchez-MartínezFRamírez-SánchezGTyersFMApertium: a free/open-source platform for rule-based machine translationMachine translation2011252127144 – reference: Lample G, Conneau A (2019) Cross-lingual language model pretraining. arXiv preprint arXiv:1901.07291 – reference: Ullmann S (2022) Gender bias in machine translation systems. In: Artificial Intelligence and Its Discontents, Springer, pp 123–144 – reference: FärberMEllBMenneCRettingerAA comparative survey of dbpedia, freebase, opencyc, wikidata, and yagoSemantic Web Journal20151115 – reference: Auer S, Bizer C, Kobilarov G, Lehmann J, Cyganiak R, Ives Z (2007) Dbpedia: a nucleus for a web of open data. In: The semantic web, Springer, pp 722–735 – reference: Koehn P, Och FJ, Marcu D (2003) Statistical phrase-based translation. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology-Volume 1, Association for Computational Linguistics, pp 48–54 – reference: Singh SP, Kumar A, Darbari H, Singh L, Rastogi A, Jain S (2017) Machine translation using deep learning: An overview. In: 2017 international conference on computer, communications and electronics (comptelix), IEEE, pp 162–167 – reference: Gehring J, Auli M, Grangier D, Yarats D, Dauphin YN (2017) Convolutional sequence to sequence learning. In: Proceedings of the 34th International Conference on Machine Learning-Volume 70, JMLR. org, pp 1243–1252 – reference: Gheini M, Ren X, May J (2021b) On the strengths of cross-attention in pretrained transformers for machine translation – reference: Schwenk H, Chaudhary V, Sun S, Gong H, Guzmán F (2019) Wikimatrix: Mining 135m parallel sentences in 1620 language pairs from wikipedia. arXiv preprint arXiv:1907.05791 – reference: Chapelle O, Weston J, Bottou L, Vapnik V (2000) Vicinal risk minimization. Adv Neural Inf Process Syst 13:1 – reference: Colah (2015) Understanding LSTM networks. http://colah.github.io/posts/2015-08-Understanding-LSTMs/. Accessed 08 Apr 2022 – reference: Guo Z, Huang Z, Zhu KQ, Chen G, Zhang K, Chen B, Huang F (2021) Automatically paraphrasing via sentence reconstruction and round-trip translation. IJCAI – reference: CanforaCOttmannARisks in neural machine translationTranslation Spaces2020915877 – reference: Dabre R, Cromieres F, Kurohashi S, Bhattacharyya P (2015) Leveraging small multilingual corpora for smt using many pivot languages. In: Proceedings of the 2015 conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 1192–1202 – reference: Kaljahi RSZ, Rubino R, Roturier J, Foster J, Park BB (2012) A detailed analysis of phrase-based and syntax-based machine translation: The search for systematic differences. In: Proceedings of AMTA – reference: Ravikumar D, Kodge S, Garg I, Roy K (2020) Exploring Vicinal Risk Minimization for Lightweight Out-of-Distribution Detection. arXiv preprint arXiv:2012.08398 – reference: Moussallem D, Ngonga Ngomo AC, Buitelaar P, Arcan M (2019) Utilizing knowledge graphs for neural machine translation augmentation. In: Proceedings of the 10th international conference on knowledge capture, pp 139–146 – reference: BarzilayRKoehnPNatural Language Processing, Fall 2004, Machine Translation I, Lecture 202004MITCS an AI Lab – reference: Kussul E, Baidyk T, Kasatkina L, Lukovich V (2001) Rosenblatt perceptrons for handwritten digit recognition. In: IJCNN’01. International Joint Conference on Neural Networks. Proceedings (Cat. No. 01CH37222), IEEE, vol 2, pp 1516–1520 – reference: Graves A (2012) Long short-term memory. In: Supervised sequence labelling with recurrent neural networks. Springer, Berlin. pp 37–45 – reference: Zhao Y, Zhang J, Zhou Y, Zong C (2020) Knowledge graphs enhanced neural machine translation. In: IJCAI, pp 4039–4045 – reference: Koehn P (2009) Chapter 4 Word-based models - Statistical Machine Translation. Cambridge University Press, Cambridge. Accessed 08 Apr 2022 – reference: Koehn P (2009) Statistical Machine Translation Lecture 5 Syntax-Based Models. Cambridge University Press, Cambridge. Accessed 08 Apr 2022 – reference: Bick E (2007) Dan2eng: wide-coverage Danish-English machine translation. In: Proceedings of Machine Translation Summit XI: Papers – reference: LiYXiongDZhangMA survey of neural machine translationChinese Journal of Computers20181227343931919 – reference: MarcusMPMarcinkiewiczMASantoriniBBuilding a large annotated corpus of English: the penn treebankComputational Linguistics1993192313330 – reference: BrownPFPietraVJDPietraSADMercerRLThe mathematics of statistical machine translation: Parameter estimationComputational linguistics1993192263311 – reference: Stasimioti M, Sosoni V, Kermanidis KL, Mouratidis D (2020) Machine Translation Quality: a comparative evaluation of SMT, NMT and tailored-NMT outputs. In: Proceedings of the 22nd annual conference of the European Association for Machine Translation, pp 441–450 – reference: Koehn P (2005) Europarl: A parallel corpus for statistical machine translation. In: Proceedings of machine translation summit x: papers, pp 79–86 – reference: Wang W, Pan SJ, Dahlmeier D, Xiao X (2017) Coupled multi-layer attentions for co-extraction of aspect and opinion terms. In: Thirty-First AAAI Conference on Artificial Intelligence – reference: Rocktäschel T, Grefenstette E, Hermann KM, Kočiskỳ T, Blunsom P (2015) Reasoning about entailment with neural attention. arXiv preprint arXiv:1509.06664 – reference: Strubell E, Ganesh A, McCallum A (2019) Energy and Policy Considerations for Deep Learning in NLP. In: Proceedings of the 57th annual meeting of the Association for Computational Linguistics, pp 3645–3650 – reference: Sun T, Shah A, Webster K, Johnson M (eds) (2021) They, them, theirs: rewriting with gender-neutral English, arXiv:2102.06788 – reference: Agency DARP (2003) Program Translingual Information Detection, Extraction and Summarization. http://www.darpa.mil/ipto/programs/tides/. Accessed 08 Apr 2022 – reference: Caswell I, Liang B (2022) Recent Advances in Google Translate. Tutorial https://ai.googleblog.com/2020/06/recent-advances-in-google-translate.html. Accessed 05 Apr 2022 – reference: Rebele T, Suchanek F, Hoffart J, Biega J, Kuzey E, Weikum G (2016) YAGO: A multilingual knowledge base from wikipedia, wordnet, and geonames. In: International semantic web conference, Springer, pp 177–185 – reference: DempsterAPLairdNMRubinDBMaximum likelihood from incomplete data via the EM algorithmJournal of the Royal Statistical Society: Series B (Methodological)19773911225015370364.62022 – reference: ZakirHMNagoorMSA Brief Study of Challenges in Machine TranslationInt J Comput Sci Issues (IJCSI)201714254 – reference: KoehnPStatistical machine translation2009Cambridge University Press1202.68446 – reference: Shieber SM, Schabes Y (1990) Synchronous tree-adjoining grammars. In: Proceedings of the 13th conference on Computational linguistics-Volume 3, pp 253–258 – reference: VandeghinsteVMartensSKotzéGTiedemannJVan den BogaertJDe SmetKVan EyndeFVan NoordGParse and corpus-based machine translationEssential Speech and Language Technology for Dutch2013Berlin, HeidelbergSpringer305319 – reference: Jean S, Cho K, Memisevic R, Bengio Y (2015) On Using Very Large Target Vocabulary for Neural Machine Translation. In: Proceedings of the 53rd annual meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp 1–10 – reference: OchFJNeyHA Systematic Comparison of Various Statistical Alignment ModelsComputational Linguistics200329119511234.68428 – reference: AhmadniaBSerranoJHaffariGPersian-Spanish low-resource statistical machine translation through English as pivot languageProceedings of the International Conference Recent Advances in Natural Language Processing, RANLP201720172430 – reference: IWSLT (2018) International Workshop on Spoken Language Translation. https://workshop2018.iwslt.org/. Accessed 08 Apr 2022 – reference: Staudemeyer RC, Morris ER (2019) Understanding LSTM–a tutorial into long short-term memory recurrent neural networks. arXiv preprint arXiv:1909.09586 – reference: Karim R (2019) Illustrated attention. https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3. Accessed 08 Apr 2022 – reference: ÁlvaroRochaAdeliHReisLPCostanzoSTrends and Advances in Information Systems and Technologies2018Springer – reference: He D, Xia Y, Qin T, Wang L, Yu N, Liu TY, Ma WY (2016) Dual learning for machine translation. Adv Neural Inf Process Syst 29 – reference: Ranathunga S, Lee ESA, Skenduli MP, Shekhar R, Alam M, Kaur R (2021) Neural machine translation for low-resource languages: a survey. arXiv preprint arXiv:2106.15115 – reference: SchiebingerLScientific research must take gender into accountNature2014507749099 – reference: Mehandru N, Robertson S, Salehi N (2022) Reliable and Safe Use of Machine Translation in Medical Settings. In: Proceedings of the 2022 ACM Conference on Fairness, Accountability, and Transparency (Seoul, South Korea)(FAccT’22). Association for Computing Machinery, New York, NY, USA – reference: Banerjee S, Lavie A (2005) METEOR: an automatic metric for MT evaluation with improved correlation with human judgments. In: Proceedings of the acl workshop on intrinsic and extrinsic evaluation measures for machine translation and/or summarization, pp 65–72 – reference: Costa-JussaMRFonollosaJALatest trends in hybrid machine translation and its applicationsComput Speech Lang2015321310 – reference: PapadimitriouCHComputational complexity2003John Wiley and Sons Ltd0557.68033 – volume: 17 start-page: 167 issue: 1 year: 2019 ident: 10423_CR7 publication-title: Int J Artif Intell – ident: 10423_CR34 doi: 10.3115/v1/D14-1179 – ident: 10423_CR80 – volume: 28 start-page: 95 issue: 1 year: 2016 ident: 10423_CR141 publication-title: International Review of Psychiatry doi: 10.3109/09540261.2015.1106446 – ident: 10423_CR159 doi: 10.1109/COMPTELIX.2017.8003957 – ident: 10423_CR53 doi: 10.18653/v1/2022.findings-acl.263 – ident: 10423_CR106 doi: 10.1007/978-981-13-3083-4_3 – volume: 18 start-page: 121 year: 2022 ident: 10423_CR116 publication-title: Machine translation for everyone: Empowering users in the age of artificial intelligence – volume: 81 start-page: 544 issue: 2 year: 2005 ident: 10423_CR180 publication-title: Language doi: 10.1353/lan.2005.0105 – ident: 10423_CR22 – ident: 10423_CR196 – ident: 10423_CR68 – volume: 9 start-page: 1 issue: 1 year: 2020 ident: 10423_CR81 publication-title: Translation Spaces doi: 10.1075/ts.00018.int – ident: 10423_CR74 – ident: 10423_CR51 – volume: 34 start-page: 325 issue: 4 year: 2020 ident: 10423_CR126 publication-title: Machine Translation doi: 10.1007/s10590-020-09255-9 – ident: 10423_CR45 – ident: 10423_CR9 – ident: 10423_CR109 doi: 10.18653/v1/D15-1166 – volume: 9 start-page: 845 year: 2021 ident: 10423_CR148 publication-title: Transactions of the Association for Computational Linguistics doi: 10.1162/tacl_a_00401 – ident: 10423_CR144 – ident: 10423_CR184 – ident: 10423_CR60 doi: 10.1007/978-3-642-24797-2_4 – ident: 10423_CR97 doi: 10.1007/978-3-540-30194-3_16 – ident: 10423_CR56 – ident: 10423_CR48 doi: 10.3115/1289189.1289273 – ident: 10423_CR138 – ident: 10423_CR190 – volume: 1 start-page: 1 issue: 1 year: 2015 ident: 10423_CR55 publication-title: Semantic Web Journal – ident: 10423_CR193 doi: 10.3115/1073012.1073079 – ident: 10423_CR132 doi: 10.18653/v1/W17-4770 – ident: 10423_CR41 doi: 10.18653/v1/P17-1055 – volume: 27 start-page: 485 issue: 4 year: 2021 ident: 10423_CR26 publication-title: Natural Language Engineering doi: 10.1017/S1351324920000364 – ident: 10423_CR204 doi: 10.3115/1599081.1599225 – ident: 10423_CR167 doi: 10.18653/v1/P19-1159 – volume: 27 start-page: 58 issue: 1 year: 2019 ident: 10423_CR145 publication-title: Perspectives doi: 10.1080/0907676X.2018.1473452 – ident: 10423_CR28 – ident: 10423_CR202 doi: 10.18653/v1/2020.findings-emnlp.30 – ident: 10423_CR156 – volume: 19 start-page: 313 issue: 2 year: 1993 ident: 10423_CR111 publication-title: Computational Linguistics – volume: 10 start-page: 765 issue: 6 year: 2020 ident: 10423_CR103 publication-title: Open Journal of Modern Linguistics doi: 10.4236/ojml.2020.106046 – volume: 29 start-page: 19 issue: 1 year: 2003 ident: 10423_CR121 publication-title: Computational Linguistics doi: 10.1162/089120103321337421 – ident: 10423_CR91 doi: 10.3115/1073445.1073462 – volume: 14 start-page: 54 issue: 2 year: 2017 ident: 10423_CR197 publication-title: Int J Comput Sci Issues (IJCSI) doi: 10.20943/01201702.5457 – volume: 39 start-page: 1 issue: 1 year: 1977 ident: 10423_CR46 publication-title: Journal of the Royal Statistical Society: Series B (Methodological) doi: 10.1111/j.2517-6161.1977.tb01600.x – volume: 32 start-page: 3 issue: 1 year: 2015 ident: 10423_CR39 publication-title: Comput Speech Lang doi: 10.1016/j.csl.2014.11.001 – ident: 10423_CR195 doi: 10.18653/v1/N19-1407 – ident: 10423_CR85 doi: 10.18653/v1/2021.acl-long.66 – ident: 10423_CR96 – ident: 10423_CR122 – ident: 10423_CR3 doi: 10.1145/3461702.3462624 – ident: 10423_CR40 – ident: 10423_CR30 doi: 10.1007/978-981-32-9748-7_4 – ident: 10423_CR79 – volume-title: Computational complexity year: 2003 ident: 10423_CR128 – ident: 10423_CR160 – volume: 21 start-page: 299 year: 2020 ident: 10423_CR8 publication-title: Computer Science doi: 10.7494/csci.2020.21.3.3701 – ident: 10423_CR154 – ident: 10423_CR63 doi: 10.4000/discours.8726 – ident: 10423_CR131 – volume: 13 start-page: 47 issue: 6 year: 1996 ident: 10423_CR114 publication-title: IEEE Signal processing magazine doi: 10.1109/79.543975 – ident: 10423_CR177 – ident: 10423_CR125 – volume: 6 start-page: 310 issue: 12 year: 2017 ident: 10423_CR155 publication-title: towards data science – ident: 10423_CR78 – ident: 10423_CR140 doi: 10.4000/books.aaccademia.8844 – ident: 10423_CR194 doi: 10.18653/v1/N16-1174 – ident: 10423_CR58 doi: 10.18653/v1/2021.emnlp-main.132 – start-page: 305 volume-title: Essential Speech and Language Technology for Dutch year: 2013 ident: 10423_CR176 doi: 10.1007/978-3-642-30910-6_17 – ident: 10423_CR157 doi: 10.3115/991146.991191 – ident: 10423_CR69 doi: 10.1145/243199.243212 – ident: 10423_CR21 doi: 10.1145/1376616.1376746 – ident: 10423_CR2 – ident: 10423_CR101 doi: 10.3115/1073445.1073465 – ident: 10423_CR11 doi: 10.1007/978-3-540-76298-0_52 – volume: 1992 start-page: 139 year: 1992 ident: 10423_CR54 publication-title: TMI – ident: 10423_CR90 – ident: 10423_CR152 doi: 10.18653/v1/P16-1009 – volume: 23 start-page: 1 issue: 1 year: 2022 ident: 10423_CR67 publication-title: Across Lang Cult doi: 10.1556/084.2022.00108 – ident: 10423_CR183 – volume: 24 start-page: 1515 issue: 11 year: 2021 ident: 10423_CR178 publication-title: Information, Communication & Society doi: 10.1080/1369118X.2020.1776370 – ident: 10423_CR137 – volume: 33 start-page: 12141 issue: 18 year: 2021 ident: 10423_CR72 publication-title: Neural Computing and Applications doi: 10.1007/s00521-021-05895-x – volume: 23 start-page: 419 issue: 3 year: 2021 ident: 10423_CR172 publication-title: Ethics and Information Technology doi: 10.1007/s10676-021-09583-1 – ident: 10423_CR38 – volume: 32 start-page: 6363 issue: 10 year: 2020 ident: 10423_CR133 publication-title: Neural Computing and Applications doi: 10.1007/s00521-019-04144-6 – volume: 45 start-page: 2673 issue: 11 year: 1997 ident: 10423_CR150 publication-title: IEEE Transactions on Signal Processing doi: 10.1109/78.650093 – ident: 10423_CR203 – ident: 10423_CR182 – ident: 10423_CR165 – ident: 10423_CR33 – volume: 38 start-page: 19 issue: 1–2 year: 2002 ident: 10423_CR83 publication-title: Speech Communication doi: 10.1016/S0167-6393(01)00041-3 – ident: 10423_CR115 – ident: 10423_CR16 – ident: 10423_CR89 – ident: 10423_CR62 doi: 10.18653/v1/E17-2038 – ident: 10423_CR199 doi: 10.18653/v1/2020.coling-main.397 – ident: 10423_CR171 – ident: 10423_CR49 doi: 10.18653/v1/D18-1045 – ident: 10423_CR50 – volume: 19 start-page: 263 issue: 2 year: 1993 ident: 10423_CR23 publication-title: Computational linguistics – ident: 10423_CR44 – ident: 10423_CR27 – ident: 10423_CR153 doi: 10.18653/v1/P16-1162 – volume: 31 start-page: 87 year: 2019 ident: 10423_CR192 publication-title: The Journal of Specialised Translation – ident: 10423_CR143 – ident: 10423_CR43 doi: 10.3115/v1/N15-1125 – ident: 10423_CR108 doi: 10.3115/v1/P15-1002 – ident: 10423_CR59 – ident: 10423_CR107 doi: 10.18653/v1/2021.acl-short.24 – ident: 10423_CR36 – ident: 10423_CR13 – ident: 10423_CR170 – ident: 10423_CR31 doi: 10.18653/v1/P19-1425 – volume-title: Trends and Advances in Information Systems and Technologies year: 2018 ident: 10423_CR10 – ident: 10423_CR1 – ident: 10423_CR142 doi: 10.1007/978-3-319-67190-1_33 – volume: 21 start-page: 1 year: 2020 ident: 10423_CR135 publication-title: Journal of Machine Learning Research – ident: 10423_CR65 doi: 10.1016/B978-0-12-741252-8.50010-8 – ident: 10423_CR104 doi: 10.1007/978-981-13-3083-4_7 – ident: 10423_CR57 doi: 10.18653/v1/2021.emnlp-main.132 – ident: 10423_CR130 – ident: 10423_CR124 – volume: 7 start-page: 220 issue: 4 year: 1991 ident: 10423_CR158 publication-title: Computational Intelligence doi: 10.1111/j.1467-8640.1991.tb00396.x – ident: 10423_CR77 – volume: 21 start-page: 165 issue: 3 year: 2007 ident: 10423_CR189 publication-title: Machine Translation doi: 10.1007/s10590-008-9041-6 – ident: 10423_CR139 doi: 10.1007/978-3-319-46547-0_19 – ident: 10423_CR129 doi: 10.3115/1073083.1073135 – ident: 10423_CR187 – ident: 10423_CR35 doi: 10.3115/v1/W14-4012 – volume: 25 start-page: 127 issue: 2 year: 2011 ident: 10423_CR52 publication-title: Machine translation doi: 10.1007/s10590-011-9090-0 – ident: 10423_CR82 – ident: 10423_CR166 doi: 10.18653/v1/P19-1355 – ident: 10423_CR84 doi: 10.18653/v1/P17-4012 – ident: 10423_CR100 – ident: 10423_CR20 – volume: 1 start-page: 1 issue: 1 year: 2022 ident: 10423_CR66 publication-title: Discover Education doi: 10.1007/s44217-022-00002-1 – ident: 10423_CR198 – ident: 10423_CR88 doi: 10.3115/1557769.1557821 – ident: 10423_CR76 – ident: 10423_CR169 – ident: 10423_CR162 doi: 10.18653/v1/P19-1164 – volume: 507 start-page: 9 issue: 7490 year: 2014 ident: 10423_CR149 publication-title: Nature doi: 10.1038/507009a – ident: 10423_CR12 – ident: 10423_CR117 doi: 10.1145/3360901.3364423 – ident: 10423_CR37 – ident: 10423_CR32 doi: 10.18653/v1/2020.acl-main.529 – ident: 10423_CR110 doi: 10.18653/v1/P18-2053 – ident: 10423_CR147 – volume: 28 start-page: 91 issue: 2 year: 2014 ident: 10423_CR95 publication-title: Machine translation doi: 10.1007/s10590-014-9153-0 – volume: 2017 start-page: 24 year: 2017 ident: 10423_CR6 publication-title: Proceedings of the International Conference Recent Advances in Natural Language Processing, RANLP – volume: 19 start-page: 1 issue: 2 year: 2019 ident: 10423_CR71 publication-title: ACM Transactions on Asian and Low-Resource Language Information Processing (TALLIP) – ident: 10423_CR164 – volume-title: Statistical machine translation year: 2009 ident: 10423_CR86 doi: 10.1017/CBO9780511815829 – ident: 10423_CR93 – ident: 10423_CR151 – ident: 10423_CR70 – ident: 10423_CR73 doi: 10.3115/v1/P15-1001 – ident: 10423_CR175 doi: 10.1007/s43681-021-00043-6 – ident: 10423_CR181 doi: 10.1609/aaai.v31i1.10974 – ident: 10423_CR163 – volume: 48 start-page: 109 year: 2018 ident: 10423_CR179 publication-title: Stetson L Rev – ident: 10423_CR186 – ident: 10423_CR134 – ident: 10423_CR113 – ident: 10423_CR29 – ident: 10423_CR42 doi: 10.18653/v1/D19-5610 – ident: 10423_CR14 – ident: 10423_CR87 – volume: 12 start-page: 2734 year: 2018 ident: 10423_CR98 publication-title: Chinese Journal of Computers – ident: 10423_CR136 doi: 10.18653/v1/2021.emnlp-main.129 – volume: 2005 start-page: 127 year: 2005 ident: 10423_CR161 publication-title: Proceedings of the Australasian Language Technology Workshop – ident: 10423_CR123 doi: 10.3115/1118037.1118045 – ident: 10423_CR17 doi: 10.1007/978-3-642-00296-0_5 – ident: 10423_CR99 doi: 10.1145/3287624.3287717 – volume: 4 start-page: 371 year: 2016 ident: 10423_CR201 publication-title: Transactions of the Association for Computational Linguistics doi: 10.1162/tacl_a_00105 – ident: 10423_CR185 – volume-title: Natural Language Processing, Fall 2004, Machine Translation I, Lecture 20 year: 2004 ident: 10423_CR15 – ident: 10423_CR94 doi: 10.1109/IJCNN.2001.939589 – ident: 10423_CR191 – ident: 10423_CR118 – ident: 10423_CR120 doi: 10.3115/992383.992448 – ident: 10423_CR112 doi: 10.1145/3531146.3533244 – ident: 10423_CR146 – ident: 10423_CR24 – ident: 10423_CR19 – ident: 10423_CR47 – volume: 9 start-page: 268 issue: 1 year: 2019 ident: 10423_CR5 publication-title: Open Computer Science doi: 10.1515/comp-2019-0019 – volume: 3 start-page: 683 issue: 5 year: 1992 ident: 10423_CR127 publication-title: IEEE Transactions on neural networks doi: 10.1109/72.159058 – volume: 29 start-page: 5923 issue: 4 year: 2021 ident: 10423_CR105 publication-title: Optics Express doi: 10.1364/OE.416672 – ident: 10423_CR173 doi: 10.1007/978-3-030-88615-8_7 – ident: 10423_CR64 – ident: 10423_CR102 doi: 10.3115/1218955.1219032 – ident: 10423_CR61 doi: 10.24963/ijcai.2021/525 – ident: 10423_CR119 doi: 10.3115/992730.992809 – ident: 10423_CR174 – volume: 9 start-page: 58 issue: 1 year: 2020 ident: 10423_CR25 publication-title: Translation Spaces doi: 10.1075/ts.00021.can – volume: 23 start-page: 377 issue: 3 year: 1997 ident: 10423_CR188 publication-title: Computational linguistics – ident: 10423_CR92 – ident: 10423_CR4 – ident: 10423_CR200 doi: 10.24963/ijcai.2020/559 – ident: 10423_CR18 doi: 10.18653/v1/D16-1025 – ident: 10423_CR75 – ident: 10423_CR168 |
| SSID | ssj0005243 |
| Score | 2.4666426 |
| Snippet | Machine translation (namely MT) has been one of the most popular fields in computational linguistics and Artificial Intelligence (AI). As one of the most... |
| SourceID | proquest gale crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 10137 |
| SubjectTerms | Analysis Artificial Intelligence Computational linguistics Computer Science Evaluation Language processing Linguistics Machine translation Natural language interfaces Neural networks Recurrent Recurrent neural networks Syntax Translation Translation methods and strategies |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB509eDF9YnVVXIQPGhw0zZp620RxYuL4IO9hTRNYEFW2VZ_v5M2ddcn6Llpms5kXszMNwCHSaYwaDAFtVYoDFBEQfMijKlludWZEbkO83rYRDIcpqNRduObwsq22r1NSdaaeq7ZLRYhRRuDqgOdAMoXYYk7tBkXo98-zBV2NLVyocgoBhTMt8p8v8cHc_RZKX_JjtZG57L7v-Ouwap3MsmguRXrsGAmG9BtBzgQL8-bcHpdl1IaUjmL1VTFETUpyLgqyQwH_IwoUsPQbsH95cXd-RX1ExSojnhaUebyKoqzXBmUUyOsibjWnBdGOKg9FUYqilDnMZv3dSbSvkXrnrEiETHGYSqLtqEzeZqYHSA8QeelQAfC4u8oq1XcN6lOQrwDCu0gC4C1hJTaw4u7KRePcgaM7CgikSKypojkARy_v_PcgGv8uvrI8Uc6ycOdtfINBHg-h2ElBwnHUCFOojSAXstC6UWylOhHoUJFfSMCOGlZNnv883d3_7Z8D1bcSPqmDq0HnWr6YvZhWb9W43J6UF_VN-PY3wc priority: 102 providerName: Springer Nature |
| Title | Machine translation and its evaluation: a study |
| URI | https://link.springer.com/article/10.1007/s10462-023-10423-5 https://www.proquest.com/docview/2838879636 |
| Volume | 56 |
| WOSCitedRecordID | wos000937654900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-7462 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005243 issn: 0269-2821 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFH64Hby4i-NGDoIHDU7aJmm9iIoiiOPgrpeQpgkIMi5T_f2-tKnjgl68PCjdQt6evLwPYE1mGpMGW1DnhMYERRQ0L6KEOpY7k1mRmyivwCZkp5Pe3GTdsODWD2WVjU2sDHXxaPwa-Ra6QdQHFBex8_RMPWqU310NEBrDMIqOmnsEA3l9-6nEo66ai0RGMbVg4dBMODqXiIiix0JDhCEF5V8c03fz_GOftHI_h5P_HfgUTITAk-zWkjINQ7Y3A5MNqAMJOj4LWydVeaUlpfdidaUc0b2C3Jd9MugNvk00qVrTzsHl4cHF_hENqArUxDwtKfN7LZqzXFvUXSucjbkxnBdW-PZ7Oop1HKMdZC5vm0ykbYceP2OFFAnmZjqL52Gk99izC0C4xICmwKDC4RxqZ3TStqmREcqFRt_IWsCaKVUmtBz3yBcPatAs2bNBIRtUxQbFW7Dx8c5T3XDjz6fXPaeU10b8stHhUAGOz_e1UruSY_qQyDhtwXLDHhXUtK8GvGnBZsPgwe3f_7v499eWYNzD0te1aMswUr682hUYM2_lff9ltRLSVRjdO-h0z_DqWFKkJ-19T9kp0i6_Q3p2fvUO_4fv4A |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JS8QwFH6ICnpxF8c1B8WDBidpk7aCiLig6IweFLzFNE1AkHGZqvin_I2-dHFc0JsHz23T0Pe9rXnvewDLUaIxabAZdU5qTFBkRtOMh9Sx1JnEytTwtBg2EbXb8eVlctYHr3UvjC-rrG1iYaizW-P_kW-gG0R9QLjI7bt76qdG-dPVeoRGCYtj-_KMKVt362gP5bvC-cH--e4hraYKUBOIOKfMnzVowVJtEbtWOhsIY4TIrPT0c5oHOgjQDjCXNk0i46ZDj5ewLJIh5ibaky-hyR_wvHpeo1rs9ENJSVmlx2VCMZVhVZNO1aoXSk7RQ6LhwxCGik-O8Ks7-HYuW7i7g9H_9qHGYKQKrMlOqQnj0Gc7EzBaD60glQ2bhI1WUT5qSe69dFkJSHQnI9d5l_S4zzeJJgX17hRc_Mm2p6G_c9uxM0BEhAFbhkGTQ5lpZ3TYtLGJOOJeo-9nDWC1CJWpKNX9ZI8b1SOD9mJXKHZViF2JBqy9P3NXEor8eveqR4by1gZXNrpqmsD9ed4utRMJTI_CKIgbMF_DQVVmqKt6WGjAeg2o3uWf3zv7-2pLMHR43jpRJ0ft4zkY5h7WRd3dPPTnD492AQbNU37dfVgsFITA1V8D7Q0cmUNo |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bS-QwFD6Iiviy3nFcL3lQfNAw07RJ24VFvA2KOgyi4FtM0wQGZHSdusv-NX-dJ23qeEHffPC1l7Q03_nOOc3JdwDW41Rh0mByaq1QmKCInGY5i6gNMqtTIzLNsrLZRNzpJFdXaXcEHuu9MK6ssubEkqjzW-3-kTfRDaI9IFxE0_qyiO5Be-fuD3UdpNxKa91Oo4LIifn_D9O3we_jA5zrDcbahxf7R9R3GKA65ElBA7fuoHiQKYM4NsKakGvNeW6Ek6JTLFRhiJwQ2KylU5G0LHq_NMhjEWGeopwQE9L_WIzHMPEb2zvsdM9fFJhUNXtMpBQTm8Bv2fEb9yLBKPpLpEEMaCh_5RbfOod3q7Sl82tPfefPNg0_fMhNdisbmYER05-FqbqdBfHsNgfNs7Kw1JDC-e-qRpCofk56xYAMVdF_EUVKUd55uPyS116A0f5t3ywC4TGGcjmGUxbnT1mtopZJdMzQIhRGBUEDgno6pfZi667nx40cykQ7CEiEgCwhIHkDtp7vuaukRj69etOhRDoewpG18tsp8P2copfcjTkmTlEcJg1YrqEhPUEN5BAXDdiuwTU8_fFzlz4fbQ0mEF_y9Lhz8hMmmUN4WZC3DKPF_YNZgXH9t-gN7le9tRC4_mqkPQFBiU2H |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+translation+and+its+evaluation%3A+a+study&rft.jtitle=The+Artificial+intelligence+review&rft.au=Mondal%2C+Subrota+Kumar&rft.au=Zhang%2C+Haoxi&rft.au=Kabir%2C+H.+M.+Dipu&rft.au=Ni%2C+Kan&rft.date=2023-09-01&rft.issn=0269-2821&rft.eissn=1573-7462&rft.volume=56&rft.issue=9&rft.spage=10137&rft.epage=10226&rft_id=info:doi/10.1007%2Fs10462-023-10423-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10462_023_10423_5 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-2821&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-2821&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-2821&client=summon |