Machine translation and its evaluation: a study
Machine translation (namely MT) has been one of the most popular fields in computational linguistics and Artificial Intelligence (AI). As one of the most promising approaches, MT can potentially break the language barrier of people from all over the world. Despite a number of studies in MT, there ar...
Uloženo v:
| Vydáno v: | The Artificial intelligence review Ročník 56; číslo 9; s. 10137 - 10226 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Dordrecht
Springer Netherlands
01.09.2023
Springer Springer Nature B.V |
| Témata: | |
| ISSN: | 0269-2821, 1573-7462 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Machine translation (namely MT) has been one of the most popular fields in computational linguistics and Artificial Intelligence (AI). As one of the most promising approaches, MT can potentially break the language barrier of people from all over the world. Despite a number of studies in MT, there are few studies in summarizing and comparing MT methods. To this end, in this paper, we principally focus on presenting the two mainstream MT schemes: statistical machine translation (SMT) and neural machine translation (NMT), including their basic rationales and developments. Meanwhile, the detailed translation models are also presented, such as the word-based model, syntax-based model, and phrase-based model in statistical machine translation. Similarly, approaches in NMT, such as the recurrent neural network-based, attention mechanism-based, and transformer-based models are presented. Last but not least, the evaluation approaches also play an important role in helping developers to improve their methods better in MT. The prevailing machine translation evaluation methodologies are also presented in this article. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0269-2821 1573-7462 |
| DOI: | 10.1007/s10462-023-10423-5 |