Conditioning for optimization problems under general perturbations

Given a function f ∈ C 1 , 1 ( B ( 0 , r ) ) , where B ( 0 , r ) denotes a ball of radius r in a real Banach space E , we provide the definition of a positive extended real number c ˆ ( f ) defined through the function, that plays a role in the study of the sensitivity of the Argmin map of the pertu...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Nonlinear analysis Ročník 75; číslo 1; s. 37 - 45
Hlavní autori: Bianchi, M., Kassay, G., Pini, R.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Amsterdam Elsevier Ltd 2012
Elsevier
Predmet:
ISSN:0362-546X, 1873-5215
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Given a function f ∈ C 1 , 1 ( B ( 0 , r ) ) , where B ( 0 , r ) denotes a ball of radius r in a real Banach space E , we provide the definition of a positive extended real number c ˆ ( f ) defined through the function, that plays a role in the study of the sensitivity of the Argmin map of the perturbed function F g ( p , u ) = f ( u ) − g ( p , u ) . This number coincides with the number c 2 ( f ) introduced by Zolezzi (2003) if linear perturbations g ( p , u ) = 〈 p , u 〉 are considered.
AbstractList Given a function f ∈ C 1 , 1 ( B ( 0 , r ) ) , where B ( 0 , r ) denotes a ball of radius r in a real Banach space E , we provide the definition of a positive extended real number c ˆ ( f ) defined through the function, that plays a role in the study of the sensitivity of the Argmin map of the perturbed function F g ( p , u ) = f ( u ) − g ( p , u ) . This number coincides with the number c 2 ( f ) introduced by Zolezzi (2003) if linear perturbations g ( p , u ) = 〈 p , u 〉 are considered.
Given a function f[isin]C super(1,1(B(0,r)), where B(0,r) denotes a ball of radius r in a real Banach space E, we provide the definition of a positive extended real number [inline image] defined through the function, that plays a role in the study of the sensitivity of the Argmin map of the perturbed function F) sub(g)(p,u)=f(u)-g(p,u). This number coincides with the number c sub(2(f) introduced by Zolezzi (2003) if linear perturbations g(p,u)=a pi ,ua[control] are considered.)
Author Kassay, G.
Bianchi, M.
Pini, R.
Author_xml – sequence: 1
  givenname: M.
  surname: Bianchi
  fullname: Bianchi, M.
  email: monica.bianchi@unicatt.it
  organization: Università Cattolica del Sacro Cuore di Milano, Italy
– sequence: 2
  givenname: G.
  surname: Kassay
  fullname: Kassay, G.
  email: kassay@math.ubbcluj.ro
  organization: Babes Bolyai University Cluj, Romania
– sequence: 3
  givenname: R.
  surname: Pini
  fullname: Pini, R.
  email: rita.pini@unimib.it
  organization: Università degli Studi di Milano Bicocca, Italy
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24758079$$DView record in Pascal Francis
BookMark eNp9kLtPwzAQhy1UJNrCzpgFiSXBduJH2aDiJVVi6cBmOY5duUrsYCdI8NfjPliQYPLJ932nu98MTJx3GoBLBAsEEb3ZFk4WGCJUQFZAik7AFHFW5gQjMgFTWFKck4q-nYFZjFsIIWIlnYL7pXeNHax31m0y40Pm-8F29kvu_rI--LrVXcxG1-iQbbTTQbZZr8MwhnrPxHNwamQb9cXxnYP148N6-ZyvXp9elnerXJWEDblR2BhOKEfQmKqmVPHG4KqpKlqj2jDSpHUhwazGpcRVTVK3JJQpuZAolXNwfRibdnofdRxEZ6PSbSud9mMUiDJUMs4RT-jVEZVRydYE6ZSNog-2k-FT4IoRDtkicfTAqeBjDNoIZYf9UUOQthUIil22YiucFLtsBWQiZZtE-Ev8mf2PcntQdIrow-ogorLaKd3YoNUgGm__lr8Bt2GTCQ
CODEN NOANDD
CitedBy_id crossref_primary_10_1007_s10957_017_1191_3
crossref_primary_10_1016_j_jmaa_2012_10_023
crossref_primary_10_1007_s10107_014_0745_5
Cites_doi 10.1023/A:1004600631797
10.1007/BF02288367
10.1137/S1052623402411885
10.1007/BF01585941
10.1137/S1052623496309296
ContentType Journal Article
Copyright 2011 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2011 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.na.2011.07.061
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Mathematics
EISSN 1873-5215
EndPage 45
ExternalDocumentID 24758079
10_1016_j_na_2011_07_061
S0362546X11005438
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABFNM
ABLJU
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADIYS
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
GBLVA
HMJ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M26
M41
MHUIS
MO0
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SME
SPC
SPCBC
SST
SSW
SSZ
T5K
TN5
WUQ
XPP
YQT
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ADNMO
AEIPS
AFJKZ
AGQPQ
AIIUN
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c357t-fc2ff856810ff4b66c8df24d446b1bf75d8730527b23a24b5df23567ca9a1f23
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000296490000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0362-546X
IngestDate Wed Oct 01 13:39:50 EDT 2025
Mon Jul 21 09:16:08 EDT 2025
Sat Nov 29 02:58:03 EST 2025
Tue Nov 18 21:59:08 EST 2025
Fri Feb 23 02:29:49 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords 90C31
Condition number theorem
Sensitivity
49K40
Convex optimization
Nonlinear analysis
Optimization method
Condition number
Mathematical model
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c357t-fc2ff856810ff4b66c8df24d446b1bf75d8730527b23a24b5df23567ca9a1f23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1671378818
PQPubID 23500
PageCount 9
ParticipantIDs proquest_miscellaneous_1671378818
pascalfrancis_primary_24758079
crossref_citationtrail_10_1016_j_na_2011_07_061
crossref_primary_10_1016_j_na_2011_07_061
elsevier_sciencedirect_doi_10_1016_j_na_2011_07_061
PublicationCentury 2000
PublicationDate 2012
2012-1-00
20120101
PublicationDateYYYYMMDD 2012-01-01
PublicationDate_xml – year: 2012
  text: 2012
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Nonlinear analysis
PublicationYear 2012
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Zolezzi (br000035) 2003; 14
Zolezzi (br000030) 2002; 9
Poliquin, Rockafellar (br000025) 1998; 8
Renegar (br000020) 1995; 70
Lucchetti (br000005) 2006
Dontchev, Rockafellar (br000040) 2009
Kassay, Kolumban (br000050) 2000; 107
Donthchev, Zolezzi (br000010) 1993; vol. 1543
Hu, Papageorgiou (br000045) 1997
Eckart, Young (br000015) 1936; 1
Poliquin (10.1016/j.na.2011.07.061_br000025) 1998; 8
Hu (10.1016/j.na.2011.07.061_br000045) 1997
Kassay (10.1016/j.na.2011.07.061_br000050) 2000; 107
Eckart (10.1016/j.na.2011.07.061_br000015) 1936; 1
Dontchev (10.1016/j.na.2011.07.061_br000040) 2009
Zolezzi (10.1016/j.na.2011.07.061_br000035) 2003; 14
Renegar (10.1016/j.na.2011.07.061_br000020) 1995; 70
Zolezzi (10.1016/j.na.2011.07.061_br000030) 2002; 9
Lucchetti (10.1016/j.na.2011.07.061_br000005) 2006
Donthchev (10.1016/j.na.2011.07.061_br000010) 1993; vol. 1543
References_xml – volume: 14
  start-page: 507
  year: 2003
  end-page: 516
  ident: br000035
  article-title: Condition number theorems in optimization
  publication-title: SIAM J. Optim.
– volume: vol. 1543
  year: 1993
  ident: br000010
  publication-title: Well-Posed Optimization Problems
– year: 2006
  ident: br000005
  publication-title: Convexity and Well-Posed Problems
– year: 2009
  ident: br000040
  article-title: Implicit Functions and Solution Mappings
– volume: 107
  start-page: 35
  year: 2000
  end-page: 50
  ident: br000050
  article-title: Multivalued parametric variational inequalities with
  publication-title: J. Optim. Theory Appl.
– volume: 1
  start-page: 211
  year: 1936
  end-page: 218
  ident: br000015
  article-title: The approximation of one matrix by another of lower rank
  publication-title: Psychometrika
– volume: 9
  start-page: 693
  year: 2002
  end-page: 700
  ident: br000030
  article-title: On the distance theorem in quadratic optimization
  publication-title: J. Convex Anal.
– volume: 70
  start-page: 279
  year: 1995
  end-page: 351
  ident: br000020
  article-title: Linear programming, complexity theory and elementary functional analysis
  publication-title: Math. Programming
– volume: 8
  start-page: 287
  year: 1998
  end-page: 299
  ident: br000025
  article-title: Tilt stability of a local minimum
  publication-title: SIAM J. Optim.
– year: 1997
  ident: br000045
  article-title: Handbook of Multivalued Analysis-Volume I: Theory
– year: 2009
  ident: 10.1016/j.na.2011.07.061_br000040
– year: 2006
  ident: 10.1016/j.na.2011.07.061_br000005
– year: 1997
  ident: 10.1016/j.na.2011.07.061_br000045
– volume: 9
  start-page: 693
  year: 2002
  ident: 10.1016/j.na.2011.07.061_br000030
  article-title: On the distance theorem in quadratic optimization
  publication-title: J. Convex Anal.
– volume: 107
  start-page: 35
  year: 2000
  ident: 10.1016/j.na.2011.07.061_br000050
  article-title: Multivalued parametric variational inequalities with α-pseudomonotone maps
  publication-title: J. Optim. Theory Appl.
  doi: 10.1023/A:1004600631797
– volume: 1
  start-page: 211
  year: 1936
  ident: 10.1016/j.na.2011.07.061_br000015
  article-title: The approximation of one matrix by another of lower rank
  publication-title: Psychometrika
  doi: 10.1007/BF02288367
– volume: vol. 1543
  year: 1993
  ident: 10.1016/j.na.2011.07.061_br000010
– volume: 14
  start-page: 507
  year: 2003
  ident: 10.1016/j.na.2011.07.061_br000035
  article-title: Condition number theorems in optimization
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623402411885
– volume: 70
  start-page: 279
  year: 1995
  ident: 10.1016/j.na.2011.07.061_br000020
  article-title: Linear programming, complexity theory and elementary functional analysis
  publication-title: Math. Programming
  doi: 10.1007/BF01585941
– volume: 8
  start-page: 287
  year: 1998
  ident: 10.1016/j.na.2011.07.061_br000025
  article-title: Tilt stability of a local minimum
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623496309296
SSID ssj0001736
Score 2.0092318
Snippet Given a function f ∈ C 1 , 1 ( B ( 0 , r ) ) , where B ( 0 , r ) denotes a ball of radius r in a real Banach space E , we provide the definition of a positive...
Given a function f[isin]C super(1,1(B(0,r)), where B(0,r) denotes a ball of radius r in a real Banach space E, we provide the definition of a positive extended...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 37
SubjectTerms Algebra
Banach space
Calculus of variations and optimal control
Condition number theorem
Conditioning
Convex optimization
Exact sciences and technology
Linear and multilinear algebra, matrix theory
Mathematical analysis
Mathematics
Nonlinearity
Numerical analysis
Numerical analysis. Scientific computation
Numerical linear algebra
Numerical methods in mathematical programming, optimization and calculus of variations
Numerical methods in optimization and calculus of variations
Optimization
Perturbation methods
Real numbers
Sciences and techniques of general use
Sensitivity
Title Conditioning for optimization problems under general perturbations
URI https://dx.doi.org/10.1016/j.na.2011.07.061
https://www.proquest.com/docview/1671378818
Volume 75
WOSCitedRecordID wos000296490000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5215
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001736
  issn: 0362-546X
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZKxwMT4jKYKJcpSLwglBEnTuw8oVANLVwipPWhPFmOE0tMI62abtrP5zh2vISJAQ-8RGnaJJXP53Pz8XcQegXasGaYRn4YRdQnFKaiEDL2VRBIWccVxqrjmf1Mi4Itl-nXyeRdvxfm4ow2Dbu8TNf_VdRwDYStt87-g7jdQ-ECnIPQ4Qhih-NfCX6-0qvQNs2qiwhXoBV-2O2Wb2wDmbbrf7vRDZR1UkqzF4PtKQfpO-uwFoZKQ-hSS0Nf4gL4PCvmx_koo_opOznJvnW5dqdz8yK_Kky0-QV8FYf2W14GGklvsYpJ13rQqU_T-GQEE6MLDZmLtaqGM_Kavjapg9PDRlg2VXoYGHL2MTX2LybLFRKGBOKdgKa30E5I4zSYop0sP1p-dMYYYJj0DGL6n9uValPiN37r7zyTu2vRwnxRptHJNZvdOSKLB-iejSC8zEj-IZrUzR66b6MJz-rqdg_tDqgm4dMXx8_bPkLvhyDxACTeECReDxKvA4lnQeKNQPIYLT4cLebHvu2m4csopltfyVAp1vHPKUXKJJGsUiGpCElKXCoaVwy0fRzSMoxESMoYvo3ihEqRCgyn-2jarJr6CfIClbBUYgbOb6J9GwZRcxSVEPgGqkpINUNv-4Hk0jLN64YnZ7wvKTzljeB66HlAOQz9DL12d6wNy8oNv4162XDrJRrvjwOobrjrYCRG95oeQTP0spcrBw2rl81EU6_OW44TiruuC-zpnx7yDN3RU8ik6J6j6XZzXr9At-XF9nu7ObDY_AkNSJqQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conditioning+for+optimization+problems+under+general+perturbations&rft.jtitle=Nonlinear+analysis&rft.au=BIANCHI%2C+M&rft.au=KASSAY%2C+G&rft.au=PINI%2C+R&rft.date=2012&rft.pub=Elsevier&rft.issn=0362-546X&rft.volume=75&rft.issue=1&rft.spage=37&rft.epage=45&rft_id=info:doi/10.1016%2Fj.na.2011.07.061&rft.externalDBID=n%2Fa&rft.externalDocID=24758079
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0362-546X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0362-546X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0362-546X&client=summon