Conditioning for optimization problems under general perturbations

Given a function f ∈ C 1 , 1 ( B ( 0 , r ) ) , where B ( 0 , r ) denotes a ball of radius r in a real Banach space E , we provide the definition of a positive extended real number c ˆ ( f ) defined through the function, that plays a role in the study of the sensitivity of the Argmin map of the pertu...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Nonlinear analysis Ročník 75; číslo 1; s. 37 - 45
Hlavní autori: Bianchi, M., Kassay, G., Pini, R.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Amsterdam Elsevier Ltd 2012
Elsevier
Predmet:
ISSN:0362-546X, 1873-5215
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Given a function f ∈ C 1 , 1 ( B ( 0 , r ) ) , where B ( 0 , r ) denotes a ball of radius r in a real Banach space E , we provide the definition of a positive extended real number c ˆ ( f ) defined through the function, that plays a role in the study of the sensitivity of the Argmin map of the perturbed function F g ( p , u ) = f ( u ) − g ( p , u ) . This number coincides with the number c 2 ( f ) introduced by Zolezzi (2003) if linear perturbations g ( p , u ) = 〈 p , u 〉 are considered.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0362-546X
1873-5215
DOI:10.1016/j.na.2011.07.061