Fast Graph Fourier Transforms Based on Graph Symmetry and Bipartition

The graph Fourier transform (GFT) is an important tool for graph signal processing, with applications ranging from graph-based image processing to spectral clustering. However, unlike the discrete Fourier transform, the GFT typically does not have a fast algorithm. In this work, we develop new appro...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on signal processing Ročník 67; číslo 18; s. 4855 - 4869
Hlavní autori: Lu, Keng-Shih, Ortega, Antonio
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 15.09.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1053-587X, 1941-0476
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The graph Fourier transform (GFT) is an important tool for graph signal processing, with applications ranging from graph-based image processing to spectral clustering. However, unlike the discrete Fourier transform, the GFT typically does not have a fast algorithm. In this work, we develop new approaches to accelerate the GFT computation. In particular, we show that Haar units (Givens rotations with angle <inline-formula><tex-math notation="LaTeX">\pi /4</tex-math></inline-formula>) can be used to reduce GFT computation cost when the graph is bipartite or satisfies certain symmetry properties based on node pairing. We also propose a graph decomposition method based on graph topological symmetry, which allows us to identify and exploit butterfly structures in stages. This method is particularly useful for graphs that are nearly regular or have some specific structures, e.g., line graphs, cycle graphs, grid graphs, and human skeletal graphs. Though butterfly stages based on graph topological symmetry cannot be used for general graphs, they are useful in applications, including video compression and human action analysis, where symmetric graphs, such as symmetric line graphs and human skeletal graphs, are used. Our proposed fast GFT implementations are shown to reduce computation costs significantly, in terms of both number of operations and empirical runtimes.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2019.2932882