Deep Learning for Distributed Channel Feedback and Multiuser Precoding in FDD Massive MIMO

This paper shows that deep neural network (DNN) can be used for efficient and distributed channel estimation, quantization, feedback, and downlink multiuser precoding for a frequency-division duplex massive multiple-input multiple-output system in which a base station (BS) serves multiple mobile use...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on wireless communications Vol. 20; no. 7; pp. 4044 - 4057
Main Authors: Sohrabi, Foad, Attiah, Kareem M., Yu, Wei
Format: Journal Article
Language:English
Published: New York IEEE 01.07.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1536-1276, 1558-2248
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper shows that deep neural network (DNN) can be used for efficient and distributed channel estimation, quantization, feedback, and downlink multiuser precoding for a frequency-division duplex massive multiple-input multiple-output system in which a base station (BS) serves multiple mobile users, but with rate-limited feedback from the users to the BS. A key observation is that the multiuser channel estimation and feedback problem can be thought of as a distributed source coding problem. In contrast to the traditional approach where the channel state information (CSI) is estimated and quantized at each user independently, this paper shows that a joint design of pilots and a new DNN architecture, which maps the received pilots directly into feedback bits at the user side then maps the feedback bits from all the users directly into the precoding matrix at the BS, can significantly improve the overall performance. This paper further proposes robust design strategies with respect to channel parameters and also a generalizable DNN architecture for varying number of users and number of feedback bits. Numerical results show that the DNN-based approach with short pilot sequences and very limited feedback overhead can already approach the performance of conventional linear precoding schemes with full CSI.
AbstractList This paper shows that deep neural network (DNN) can be used for efficient and distributed channel estimation, quantization, feedback, and downlink multiuser precoding for a frequency-division duplex massive multiple-input multiple-output system in which a base station (BS) serves multiple mobile users, but with rate-limited feedback from the users to the BS. A key observation is that the multiuser channel estimation and feedback problem can be thought of as a distributed source coding problem. In contrast to the traditional approach where the channel state information (CSI) is estimated and quantized at each user independently, this paper shows that a joint design of pilots and a new DNN architecture, which maps the received pilots directly into feedback bits at the user side then maps the feedback bits from all the users directly into the precoding matrix at the BS, can significantly improve the overall performance. This paper further proposes robust design strategies with respect to channel parameters and also a generalizable DNN architecture for varying number of users and number of feedback bits. Numerical results show that the DNN-based approach with short pilot sequences and very limited feedback overhead can already approach the performance of conventional linear precoding schemes with full CSI.
Author Yu, Wei
Sohrabi, Foad
Attiah, Kareem M.
Author_xml – sequence: 1
  givenname: Foad
  orcidid: 0000-0002-7514-2578
  surname: Sohrabi
  fullname: Sohrabi, Foad
  email: fsohrabi@ece.utoronto.ca
  organization: The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, Canada
– sequence: 2
  givenname: Kareem M.
  orcidid: 0000-0001-8838-9687
  surname: Attiah
  fullname: Attiah, Kareem M.
  email: kattiah@ece.utoronto.ca
  organization: The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, Canada
– sequence: 3
  givenname: Wei
  orcidid: 0000-0002-7453-422X
  surname: Yu
  fullname: Yu, Wei
  email: weiyu@ece.utoronto.ca
  organization: The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, Canada
BookMark eNp9kMFLwzAUh4NMcJveBS8Bz51p0jTtUVqng5V5mAheSpq-amZNZ5IK_ve2bHjw4On9Dr_vPd43QxPTGUDoMiSLMCTpzfY5W1BCwwUjnA_hBE1DzpOA0iiZjJnFQUhFfIZmzu0ICUXM-RS95AB7vAZpjTavuOkszrXzVle9hxpnb9IYaPESoK6kesfS1LjoW697BxY_WlBdPYLa4GWe40I6p78AF6tic45OG9k6uDjOOXpa3m2zh2C9uV9lt-tAMS58AClLlRSgKMQq5ioBFqU1ow2TdVWp4bmGsghILKtICM4FF2nMVBJBJCCRFZuj68Peve0-e3C-3HW9NcPJkvIoHRAu2NCKDy1lO-csNKXSXnrdGW-lbsuQlKPHcvBYjh7Lo8cBJH_AvdUf0n7_h1wdEA0Av_WURSKhhP0AJSR-ZA
CODEN ITWCAX
CitedBy_id crossref_primary_10_1109_TCOMM_2022_3209887
crossref_primary_10_1007_s42835_021_00778_6
crossref_primary_10_1109_TCOMM_2023_3282227
crossref_primary_10_1109_TWC_2022_3149946
crossref_primary_10_1109_JSEN_2025_3526977
crossref_primary_10_1109_TCOMM_2021_3120294
crossref_primary_10_1109_TWC_2022_3170104
crossref_primary_10_1109_TWC_2024_3381211
crossref_primary_10_3390_e24040441
crossref_primary_10_1109_TWC_2022_3215104
crossref_primary_10_1109_TWC_2022_3218579
crossref_primary_10_1109_JSAC_2022_3196064
crossref_primary_10_1016_j_phycom_2024_102516
crossref_primary_10_1109_JSAC_2025_3559124
crossref_primary_10_3390_telecom5010011
crossref_primary_10_1109_JSAC_2025_3559165
crossref_primary_10_1109_TCOMM_2022_3180388
crossref_primary_10_1109_TVT_2024_3422663
crossref_primary_10_1109_TCOMM_2022_3199489
crossref_primary_10_1109_TWC_2023_3336911
crossref_primary_10_1016_j_phycom_2023_102193
crossref_primary_10_1109_TWC_2022_3141653
crossref_primary_10_1109_JSYST_2024_3357712
crossref_primary_10_1109_ACCESS_2022_3232855
crossref_primary_10_1109_TWC_2023_3275990
crossref_primary_10_1109_MBITS_2024_3504521
crossref_primary_10_1109_LCOMM_2022_3156946
crossref_primary_10_1109_JSAC_2023_3240781
crossref_primary_10_1109_TWC_2024_3422399
crossref_primary_10_1109_JSAC_2021_3126050
crossref_primary_10_1109_TWC_2021_3111843
crossref_primary_10_1109_LCOMM_2023_3342166
crossref_primary_10_1109_MBITS_2022_3212978
crossref_primary_10_1007_s40031_024_01131_x
crossref_primary_10_3389_fncom_2024_1345644
crossref_primary_10_3390_s22010309
crossref_primary_10_1109_ACCESS_2022_3208284
crossref_primary_10_1109_LWC_2022_3193093
crossref_primary_10_1109_TCOMM_2022_3143122
crossref_primary_10_1109_TVT_2023_3327276
crossref_primary_10_1016_j_dsp_2025_105515
crossref_primary_10_1109_TWC_2023_3299338
crossref_primary_10_1109_JSAC_2021_3087269
crossref_primary_10_1109_TWC_2023_3250227
crossref_primary_10_1109_TVT_2024_3452409
crossref_primary_10_1109_TWC_2024_3516633
crossref_primary_10_1109_TVT_2021_3110608
crossref_primary_10_1109_TWC_2022_3219840
crossref_primary_10_1007_s11432_023_3838_4
crossref_primary_10_1007_s11277_023_10748_y
crossref_primary_10_1109_JSAC_2022_3221976
crossref_primary_10_1109_TSP_2022_3213488
crossref_primary_10_1109_JSAC_2021_3126076
crossref_primary_10_1109_TWC_2022_3181219
crossref_primary_10_3390_electronics11193023
crossref_primary_10_1109_TWC_2021_3120926
crossref_primary_10_1109_TWC_2023_3330902
crossref_primary_10_1109_TCOMM_2024_3403498
crossref_primary_10_1109_TWC_2023_3324621
crossref_primary_10_1016_j_iot_2024_101406
crossref_primary_10_1109_TCOMM_2022_3141399
crossref_primary_10_1109_JSTSP_2022_3160268
crossref_primary_10_1002_ett_4797
crossref_primary_10_1109_TWC_2025_3543392
crossref_primary_10_1109_LWC_2024_3509612
crossref_primary_10_1109_LWC_2024_3452486
crossref_primary_10_1109_TCOMM_2023_3317924
crossref_primary_10_1109_TWC_2022_3187790
crossref_primary_10_1109_TWC_2025_3542798
crossref_primary_10_1109_TWC_2023_3327984
crossref_primary_10_1109_JSAC_2021_3087234
crossref_primary_10_1109_TCOMM_2021_3133939
crossref_primary_10_1109_TWC_2022_3170576
crossref_primary_10_1080_00207217_2024_2302341
crossref_primary_10_1109_JSAC_2024_3460084
crossref_primary_10_1109_TWC_2022_3163249
crossref_primary_10_1109_TCOMM_2024_3511954
crossref_primary_10_1109_ACCESS_2022_3174095
crossref_primary_10_1109_MCOM_001_2400285
crossref_primary_10_1109_TWC_2025_3562818
crossref_primary_10_1109_LCOMM_2022_3179236
crossref_primary_10_3390_s21165298
crossref_primary_10_1109_TCOMM_2021_3086525
crossref_primary_10_1109_TCOMM_2022_3217777
crossref_primary_10_1109_TWC_2022_3191605
crossref_primary_10_3390_s23094359
crossref_primary_10_1109_ACCESS_2022_3202640
crossref_primary_10_1109_TWC_2024_3496933
Cites_doi 10.1109/TIT.2011.2158882
10.1109/JSAC.2019.2904352
10.1109/JSTSP.2018.2819135
10.1109/TIT.1973.1055037
10.1109/JSAC.2014.2328098
10.1109/IEEECONF44664.2019.9048810
10.1109/TSP.2019.2899805
10.1109/TIT.1979.1056022
10.1109/TIT.2007.904785
10.1109/TIT.1976.1055508
10.1109/TIT.2007.909108
10.1073/pnas.0909892106
10.1109/TSP.2014.2324991
10.1109/PIMRC.2019.8904332
10.1109/TVT.2019.2893928
10.1109/TSP.2015.2463260
10.1109/MSP.2004.1328091
10.1017/CBO9781139030687
10.1109/TWC.2010.092810.091092
10.1109/TIT.2007.892784
10.1109/GLOCOM.2007.829
10.1109/LWC.2020.3019321
10.1109/LWC.2019.2962114
10.1109/JSAC.2008.081002
10.1109/TWC.2015.2455980
10.1109/LCOMM.2020.2983018
10.1109/LCOMM.2018.2882829
10.1109/MCOM.2016.7402270
10.1109/JSTSP.2016.2520912
10.1109/ICASSP40776.2020.9054488
10.1109/TIT.2010.2046225
10.1109/WCNC.2012.6214417
10.1109/LWC.2018.2818160
10.1109/JSAIT.2020.2986467
10.1109/MCOM.2011.5783993
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TWC.2021.3055202
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2248
EndPage 4057
ExternalDocumentID 10_1109_TWC_2021_3055202
9347820
Genre orig-research
GrantInformation_xml – fundername: Huawei Technologies Canada
  funderid: 10.13039/501100003816
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IES
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c357t-e939ca7ec2e6c65c8e349d32f3adbbc110f234e06ab47755757963c84e47e8ab3
IEDL.DBID RIE
ISICitedReferencesCount 111
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000671527500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1536-1276
IngestDate Fri Jul 25 09:23:55 EDT 2025
Sat Nov 29 06:23:51 EST 2025
Tue Nov 18 22:22:55 EST 2025
Wed Aug 27 02:26:38 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-e939ca7ec2e6c65c8e349d32f3adbbc110f234e06ab47755757963c84e47e8ab3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7514-2578
0000-0002-7453-422X
0000-0001-8838-9687
PQID 2549755573
PQPubID 105736
PageCount 14
ParticipantIDs proquest_journals_2549755573
crossref_citationtrail_10_1109_TWC_2021_3055202
crossref_primary_10_1109_TWC_2021_3055202
ieee_primary_9347820
PublicationCentury 2000
PublicationDate 2021-July
2021-7-00
20210701
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-July
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on wireless communications
PublicationTitleAbbrev TWC
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref12
ref37
ref15
ref36
ref14
ref31
ref30
guo (ref38) 2020
ref33
ref11
ref32
ref10
hinton (ref42) 2012
ref2
ref1
chung (ref21) 2016
ref17
ref16
ref18
bengio (ref20) 2013
chollet (ref44) 2015
kingma (ref45) 2014
abadi (ref43) 2016
mashhadi (ref39) 2020
ref23
donoho (ref27) 2009; 106
ref26
rao (ref24) 2014; 62
ref25
ref41
ref22
ref28
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ioffe (ref46) 2015
ref40
hinton (ref19) 2012
mashhadi (ref35) 2020
References_xml – ident: ref17
  doi: 10.1109/TIT.2011.2158882
– ident: ref5
  doi: 10.1109/JSAC.2019.2904352
– ident: ref31
  doi: 10.1109/JSTSP.2018.2819135
– ident: ref10
  doi: 10.1109/TIT.1973.1055037
– ident: ref6
  doi: 10.1109/JSAC.2014.2328098
– year: 2012
  ident: ref42
  article-title: Improving neural networks by preventing co-adaptation of feature detectors
  publication-title: arXiv 1207 0580
– ident: ref3
  doi: 10.1109/IEEECONF44664.2019.9048810
– ident: ref1
  doi: 10.1109/TSP.2019.2899805
– ident: ref14
  doi: 10.1109/TIT.1979.1056022
– ident: ref16
  doi: 10.1109/TIT.2007.904785
– ident: ref11
  doi: 10.1109/TIT.1976.1055508
– year: 2012
  ident: ref19
  article-title: Neural networks for machine learning
  publication-title: The course of lectures
– ident: ref28
  doi: 10.1109/TIT.2007.909108
– year: 2020
  ident: ref39
  article-title: Distributed deep convolutional compression for massive MIMO CSI feedback
  publication-title: IEEE Trans Wireless Commun
– volume: 106
  start-page: 18914
  year: 2009
  ident: ref27
  article-title: Message-passing algorithms for compressed sensing
  publication-title: Proc Nat Acad Sci USA
  doi: 10.1073/pnas.0909892106
– volume: 62
  start-page: 3261
  year: 2014
  ident: ref24
  article-title: Distributed compressive CSIT estimation and feedback for FDD multi-user massive MIMO systems
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2014.2324991
– ident: ref29
  doi: 10.1109/PIMRC.2019.8904332
– year: 2016
  ident: ref21
  article-title: Hierarchical multiscale recurrent neural networks
  publication-title: arXiv 1609 01704
– year: 2015
  ident: ref44
  publication-title: Keras
– ident: ref2
  doi: 10.1109/TVT.2019.2893928
– ident: ref23
  doi: 10.1109/TSP.2015.2463260
– ident: ref12
  doi: 10.1109/MSP.2004.1328091
– year: 2020
  ident: ref38
  article-title: DL-based CSI feedback and cooperative recovery in massive MIMO
  publication-title: arXiv 2003 03303
– ident: ref13
  doi: 10.1017/CBO9781139030687
– ident: ref7
  doi: 10.1109/TWC.2010.092810.091092
– year: 2014
  ident: ref45
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv 1412 6980
– year: 2020
  ident: ref35
  article-title: Pruning the pilots: Deep learning-based pilot design and channel estimation for MIMO-OFDM systems
  publication-title: arXiv 2006 11796
– ident: ref18
  doi: 10.1109/TIT.2007.892784
– ident: ref33
  doi: 10.1109/GLOCOM.2007.829
– ident: ref26
  doi: 10.1109/LWC.2020.3019321
– ident: ref34
  doi: 10.1109/LWC.2019.2962114
– year: 2016
  ident: ref43
  article-title: TensorFlow: Large-scale machine learning on heterogeneous distributed systems
  publication-title: arXiv 1603 04467
– year: 2013
  ident: ref20
  article-title: Estimating or propagating gradients through stochastic neurons for conditional computation
  publication-title: arXiv 1308 3432
– ident: ref22
  doi: 10.1109/JSAC.2008.081002
– ident: ref32
  doi: 10.1109/TWC.2015.2455980
– year: 2015
  ident: ref46
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
  publication-title: arXiv 1502 03167
– ident: ref30
  doi: 10.1109/LCOMM.2020.2983018
– ident: ref37
  doi: 10.1109/LCOMM.2018.2882829
– ident: ref8
  doi: 10.1109/MCOM.2016.7402270
– ident: ref41
  doi: 10.1109/JSTSP.2016.2520912
– ident: ref4
  doi: 10.1109/ICASSP40776.2020.9054488
– ident: ref40
  doi: 10.1109/TIT.2010.2046225
– ident: ref25
  doi: 10.1109/WCNC.2012.6214417
– ident: ref36
  doi: 10.1109/LWC.2018.2818160
– ident: ref15
  doi: 10.1109/JSAIT.2020.2986467
– ident: ref9
  doi: 10.1109/MCOM.2011.5783993
SSID ssj0017655
Score 2.673436
Snippet This paper shows that deep neural network (DNN) can be used for efficient and distributed channel estimation, quantization, feedback, and downlink multiuser...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4044
SubjectTerms Artificial neural networks
Channel estimation
Deep learning
deep neural network (DNN)
distributed source coding (DSC)
Downlink
downlink precoding
Estimation
Feedback
feedback frequency-division duplex (FDD)
Frequency division duplexing
Machine learning
massive multiple-input multiple-output (MIMO)
Precoding
quantization
Quantization (signal)
Radio equipment
Robust design
Training
Title Deep Learning for Distributed Channel Feedback and Multiuser Precoding in FDD Massive MIMO
URI https://ieeexplore.ieee.org/document/9347820
https://www.proquest.com/docview/2549755573
Volume 20
WOSCitedRecordID wos000671527500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2248
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017655
  issn: 1536-1276
  databaseCode: RIE
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLY2xAEOvAZivJQDFyS6jSZtmiPamOCwscMQE5eqSV00MXXTGPx-4rSrkEBI3HpIqtaOYzuOvw_gkkeZ0txoz3o_7QllhJfYRMjrZIE2OksI0MSRTcjhMJpM1KgG11UvDCK6y2fYokdXy0_n5oOOytqKC4J3q0NdSln0alUVAxk6hlNrwMQrI6uSZEe1x89dmwj6Ny1Ct_LLA5S1C3KcKj82Yudd-rv_-6492CmjSHZbqH0fapgfwPY3bMEGvPQQF6yET31lNjZlPQLJJX4rTBl1FeQ4Y33rvXRi3liSp8x149KxBRtRokxujU1z1u_12MAG2XZjZIOHweMhPPXvxt17ryRS8AwP5MpDxZVJJBofQxMGJkIuVMr9jCep1sYKKfO5wE6YaCFlYCM4ae3SRAKFxCjR_Ag28nmOx8BCxQPr4LQ1dCOUDnSWYiZMZJPRjBhvmtBeyzY2Jco4kV3MYpdtdFRstRGTNuJSG024qmYsCoSNP8Y2SPrVuFLwTThbqy8uTfA9pszX_ksg-cnvs05hi95d3L09g43V8gPPYdN8rqbvywu3ur4AoPDLNA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZ4ScCB10AMBuTABYluXZM2zRFtTCC2wWGIiUvVpC5CoIJg8PuJs65CAiFx6yFRWzuO7Tj-PoBjHudKc6M96_20J5QRXmoTIc_PQ210nhKgiSObkMNhPB6rmzk4rXphENFdPsMmPbpafvZiPuiorKW4IHi3eVgMhQja026tqmYgI8dxak2YmGVkVZT0VWt017GpYNBuEr5VUB6hzJyQY1X5sRU7_9Jb_9-XbcBaGUeys6niN2EOiy1Y_YYuWIP7LuIrKwFUH5iNTlmXYHKJ4QozRn0FBT6znvVfOjVPLC0y5vpx6eCC3VCqTI6NPRas1-2ygQ2z7dbIBpeD62247Z2POhdeSaXgGR7KiYeKK5NKNAFGJgpNjFyojAc5TzOtjRVSHnCBfpRqIWVoYzhpLdPEAoXEONV8BxaKlwJ3gUWKh9bFaWvqRigd6jzDXJjYpqM5cd7UoTWTbWJKnHGiu3hOXL7hq8RqIyFtJKU26nBSzXidYmz8MbZG0q_GlYKvQ2OmvqQ0wveEcl_7L6Hke7_POoLli9Ggn_Qvh1f7sELvmd7EbcDC5O0DD2DJfE4e398O3Ur7Al7bzns
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+for+Distributed+Channel+Feedback+and+Multiuser+Precoding+in+FDD+Massive+MIMO&rft.jtitle=IEEE+transactions+on+wireless+communications&rft.au=Sohrabi%2C+Foad&rft.au=Attiah%2C+Kareem+M.&rft.au=Yu%2C+Wei&rft.date=2021-07-01&rft.issn=1536-1276&rft.eissn=1558-2248&rft.volume=20&rft.issue=7&rft.spage=4044&rft.epage=4057&rft_id=info:doi/10.1109%2FTWC.2021.3055202&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TWC_2021_3055202
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1276&client=summon