Deep Learning for Distributed Channel Feedback and Multiuser Precoding in FDD Massive MIMO
This paper shows that deep neural network (DNN) can be used for efficient and distributed channel estimation, quantization, feedback, and downlink multiuser precoding for a frequency-division duplex massive multiple-input multiple-output system in which a base station (BS) serves multiple mobile use...
Saved in:
| Published in: | IEEE transactions on wireless communications Vol. 20; no. 7; pp. 4044 - 4057 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.07.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 1536-1276, 1558-2248 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This paper shows that deep neural network (DNN) can be used for efficient and distributed channel estimation, quantization, feedback, and downlink multiuser precoding for a frequency-division duplex massive multiple-input multiple-output system in which a base station (BS) serves multiple mobile users, but with rate-limited feedback from the users to the BS. A key observation is that the multiuser channel estimation and feedback problem can be thought of as a distributed source coding problem. In contrast to the traditional approach where the channel state information (CSI) is estimated and quantized at each user independently, this paper shows that a joint design of pilots and a new DNN architecture, which maps the received pilots directly into feedback bits at the user side then maps the feedback bits from all the users directly into the precoding matrix at the BS, can significantly improve the overall performance. This paper further proposes robust design strategies with respect to channel parameters and also a generalizable DNN architecture for varying number of users and number of feedback bits. Numerical results show that the DNN-based approach with short pilot sequences and very limited feedback overhead can already approach the performance of conventional linear precoding schemes with full CSI. |
|---|---|
| AbstractList | This paper shows that deep neural network (DNN) can be used for efficient and distributed channel estimation, quantization, feedback, and downlink multiuser precoding for a frequency-division duplex massive multiple-input multiple-output system in which a base station (BS) serves multiple mobile users, but with rate-limited feedback from the users to the BS. A key observation is that the multiuser channel estimation and feedback problem can be thought of as a distributed source coding problem. In contrast to the traditional approach where the channel state information (CSI) is estimated and quantized at each user independently, this paper shows that a joint design of pilots and a new DNN architecture, which maps the received pilots directly into feedback bits at the user side then maps the feedback bits from all the users directly into the precoding matrix at the BS, can significantly improve the overall performance. This paper further proposes robust design strategies with respect to channel parameters and also a generalizable DNN architecture for varying number of users and number of feedback bits. Numerical results show that the DNN-based approach with short pilot sequences and very limited feedback overhead can already approach the performance of conventional linear precoding schemes with full CSI. |
| Author | Yu, Wei Sohrabi, Foad Attiah, Kareem M. |
| Author_xml | – sequence: 1 givenname: Foad orcidid: 0000-0002-7514-2578 surname: Sohrabi fullname: Sohrabi, Foad email: fsohrabi@ece.utoronto.ca organization: The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, Canada – sequence: 2 givenname: Kareem M. orcidid: 0000-0001-8838-9687 surname: Attiah fullname: Attiah, Kareem M. email: kattiah@ece.utoronto.ca organization: The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, Canada – sequence: 3 givenname: Wei orcidid: 0000-0002-7453-422X surname: Yu fullname: Yu, Wei email: weiyu@ece.utoronto.ca organization: The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, Canada |
| BookMark | eNp9kMFLwzAUh4NMcJveBS8Bz51p0jTtUVqng5V5mAheSpq-amZNZ5IK_ve2bHjw4On9Dr_vPd43QxPTGUDoMiSLMCTpzfY5W1BCwwUjnA_hBE1DzpOA0iiZjJnFQUhFfIZmzu0ICUXM-RS95AB7vAZpjTavuOkszrXzVle9hxpnb9IYaPESoK6kesfS1LjoW697BxY_WlBdPYLa4GWe40I6p78AF6tic45OG9k6uDjOOXpa3m2zh2C9uV9lt-tAMS58AClLlRSgKMQq5ioBFqU1ow2TdVWp4bmGsghILKtICM4FF2nMVBJBJCCRFZuj68Peve0-e3C-3HW9NcPJkvIoHRAu2NCKDy1lO-csNKXSXnrdGW-lbsuQlKPHcvBYjh7Lo8cBJH_AvdUf0n7_h1wdEA0Av_WURSKhhP0AJSR-ZA |
| CODEN | ITWCAX |
| CitedBy_id | crossref_primary_10_1109_TCOMM_2022_3209887 crossref_primary_10_1007_s42835_021_00778_6 crossref_primary_10_1109_TCOMM_2023_3282227 crossref_primary_10_1109_TWC_2022_3149946 crossref_primary_10_1109_JSEN_2025_3526977 crossref_primary_10_1109_TCOMM_2021_3120294 crossref_primary_10_1109_TWC_2022_3170104 crossref_primary_10_1109_TWC_2024_3381211 crossref_primary_10_3390_e24040441 crossref_primary_10_1109_TWC_2022_3215104 crossref_primary_10_1109_TWC_2022_3218579 crossref_primary_10_1109_JSAC_2022_3196064 crossref_primary_10_1016_j_phycom_2024_102516 crossref_primary_10_1109_JSAC_2025_3559124 crossref_primary_10_3390_telecom5010011 crossref_primary_10_1109_JSAC_2025_3559165 crossref_primary_10_1109_TCOMM_2022_3180388 crossref_primary_10_1109_TVT_2024_3422663 crossref_primary_10_1109_TCOMM_2022_3199489 crossref_primary_10_1109_TWC_2023_3336911 crossref_primary_10_1016_j_phycom_2023_102193 crossref_primary_10_1109_TWC_2022_3141653 crossref_primary_10_1109_JSYST_2024_3357712 crossref_primary_10_1109_ACCESS_2022_3232855 crossref_primary_10_1109_TWC_2023_3275990 crossref_primary_10_1109_MBITS_2024_3504521 crossref_primary_10_1109_LCOMM_2022_3156946 crossref_primary_10_1109_JSAC_2023_3240781 crossref_primary_10_1109_TWC_2024_3422399 crossref_primary_10_1109_JSAC_2021_3126050 crossref_primary_10_1109_TWC_2021_3111843 crossref_primary_10_1109_LCOMM_2023_3342166 crossref_primary_10_1109_MBITS_2022_3212978 crossref_primary_10_1007_s40031_024_01131_x crossref_primary_10_3389_fncom_2024_1345644 crossref_primary_10_3390_s22010309 crossref_primary_10_1109_ACCESS_2022_3208284 crossref_primary_10_1109_LWC_2022_3193093 crossref_primary_10_1109_TCOMM_2022_3143122 crossref_primary_10_1109_TVT_2023_3327276 crossref_primary_10_1016_j_dsp_2025_105515 crossref_primary_10_1109_TWC_2023_3299338 crossref_primary_10_1109_JSAC_2021_3087269 crossref_primary_10_1109_TWC_2023_3250227 crossref_primary_10_1109_TVT_2024_3452409 crossref_primary_10_1109_TWC_2024_3516633 crossref_primary_10_1109_TVT_2021_3110608 crossref_primary_10_1109_TWC_2022_3219840 crossref_primary_10_1007_s11432_023_3838_4 crossref_primary_10_1007_s11277_023_10748_y crossref_primary_10_1109_JSAC_2022_3221976 crossref_primary_10_1109_TSP_2022_3213488 crossref_primary_10_1109_JSAC_2021_3126076 crossref_primary_10_1109_TWC_2022_3181219 crossref_primary_10_3390_electronics11193023 crossref_primary_10_1109_TWC_2021_3120926 crossref_primary_10_1109_TWC_2023_3330902 crossref_primary_10_1109_TCOMM_2024_3403498 crossref_primary_10_1109_TWC_2023_3324621 crossref_primary_10_1016_j_iot_2024_101406 crossref_primary_10_1109_TCOMM_2022_3141399 crossref_primary_10_1109_JSTSP_2022_3160268 crossref_primary_10_1002_ett_4797 crossref_primary_10_1109_TWC_2025_3543392 crossref_primary_10_1109_LWC_2024_3509612 crossref_primary_10_1109_LWC_2024_3452486 crossref_primary_10_1109_TCOMM_2023_3317924 crossref_primary_10_1109_TWC_2022_3187790 crossref_primary_10_1109_TWC_2025_3542798 crossref_primary_10_1109_TWC_2023_3327984 crossref_primary_10_1109_JSAC_2021_3087234 crossref_primary_10_1109_TCOMM_2021_3133939 crossref_primary_10_1109_TWC_2022_3170576 crossref_primary_10_1080_00207217_2024_2302341 crossref_primary_10_1109_JSAC_2024_3460084 crossref_primary_10_1109_TWC_2022_3163249 crossref_primary_10_1109_TCOMM_2024_3511954 crossref_primary_10_1109_ACCESS_2022_3174095 crossref_primary_10_1109_MCOM_001_2400285 crossref_primary_10_1109_TWC_2025_3562818 crossref_primary_10_1109_LCOMM_2022_3179236 crossref_primary_10_3390_s21165298 crossref_primary_10_1109_TCOMM_2021_3086525 crossref_primary_10_1109_TCOMM_2022_3217777 crossref_primary_10_1109_TWC_2022_3191605 crossref_primary_10_3390_s23094359 crossref_primary_10_1109_ACCESS_2022_3202640 crossref_primary_10_1109_TWC_2024_3496933 |
| Cites_doi | 10.1109/TIT.2011.2158882 10.1109/JSAC.2019.2904352 10.1109/JSTSP.2018.2819135 10.1109/TIT.1973.1055037 10.1109/JSAC.2014.2328098 10.1109/IEEECONF44664.2019.9048810 10.1109/TSP.2019.2899805 10.1109/TIT.1979.1056022 10.1109/TIT.2007.904785 10.1109/TIT.1976.1055508 10.1109/TIT.2007.909108 10.1073/pnas.0909892106 10.1109/TSP.2014.2324991 10.1109/PIMRC.2019.8904332 10.1109/TVT.2019.2893928 10.1109/TSP.2015.2463260 10.1109/MSP.2004.1328091 10.1017/CBO9781139030687 10.1109/TWC.2010.092810.091092 10.1109/TIT.2007.892784 10.1109/GLOCOM.2007.829 10.1109/LWC.2020.3019321 10.1109/LWC.2019.2962114 10.1109/JSAC.2008.081002 10.1109/TWC.2015.2455980 10.1109/LCOMM.2020.2983018 10.1109/LCOMM.2018.2882829 10.1109/MCOM.2016.7402270 10.1109/JSTSP.2016.2520912 10.1109/ICASSP40776.2020.9054488 10.1109/TIT.2010.2046225 10.1109/WCNC.2012.6214417 10.1109/LWC.2018.2818160 10.1109/JSAIT.2020.2986467 10.1109/MCOM.2011.5783993 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TWC.2021.3055202 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-2248 |
| EndPage | 4057 |
| ExternalDocumentID | 10_1109_TWC_2021_3055202 9347820 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Huawei Technologies Canada funderid: 10.13039/501100003816 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IES IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c357t-e939ca7ec2e6c65c8e349d32f3adbbc110f234e06ab47755757963c84e47e8ab3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 111 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000671527500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1536-1276 |
| IngestDate | Fri Jul 25 09:23:55 EDT 2025 Sat Nov 29 06:23:51 EST 2025 Tue Nov 18 22:22:55 EST 2025 Wed Aug 27 02:26:38 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c357t-e939ca7ec2e6c65c8e349d32f3adbbc110f234e06ab47755757963c84e47e8ab3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-7514-2578 0000-0002-7453-422X 0000-0001-8838-9687 |
| PQID | 2549755573 |
| PQPubID | 105736 |
| PageCount | 14 |
| ParticipantIDs | proquest_journals_2549755573 crossref_citationtrail_10_1109_TWC_2021_3055202 crossref_primary_10_1109_TWC_2021_3055202 ieee_primary_9347820 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-July 2021-7-00 20210701 |
| PublicationDateYYYYMMDD | 2021-07-01 |
| PublicationDate_xml | – month: 07 year: 2021 text: 2021-July |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on wireless communications |
| PublicationTitleAbbrev | TWC |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref34 ref12 ref37 ref15 ref36 ref14 ref31 ref30 guo (ref38) 2020 ref33 ref11 ref32 ref10 hinton (ref42) 2012 ref2 ref1 chung (ref21) 2016 ref17 ref16 ref18 bengio (ref20) 2013 chollet (ref44) 2015 kingma (ref45) 2014 abadi (ref43) 2016 mashhadi (ref39) 2020 ref23 donoho (ref27) 2009; 106 ref26 rao (ref24) 2014; 62 ref25 ref41 ref22 ref28 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ioffe (ref46) 2015 ref40 hinton (ref19) 2012 mashhadi (ref35) 2020 |
| References_xml | – ident: ref17 doi: 10.1109/TIT.2011.2158882 – ident: ref5 doi: 10.1109/JSAC.2019.2904352 – ident: ref31 doi: 10.1109/JSTSP.2018.2819135 – ident: ref10 doi: 10.1109/TIT.1973.1055037 – ident: ref6 doi: 10.1109/JSAC.2014.2328098 – year: 2012 ident: ref42 article-title: Improving neural networks by preventing co-adaptation of feature detectors publication-title: arXiv 1207 0580 – ident: ref3 doi: 10.1109/IEEECONF44664.2019.9048810 – ident: ref1 doi: 10.1109/TSP.2019.2899805 – ident: ref14 doi: 10.1109/TIT.1979.1056022 – ident: ref16 doi: 10.1109/TIT.2007.904785 – ident: ref11 doi: 10.1109/TIT.1976.1055508 – year: 2012 ident: ref19 article-title: Neural networks for machine learning publication-title: The course of lectures – ident: ref28 doi: 10.1109/TIT.2007.909108 – year: 2020 ident: ref39 article-title: Distributed deep convolutional compression for massive MIMO CSI feedback publication-title: IEEE Trans Wireless Commun – volume: 106 start-page: 18914 year: 2009 ident: ref27 article-title: Message-passing algorithms for compressed sensing publication-title: Proc Nat Acad Sci USA doi: 10.1073/pnas.0909892106 – volume: 62 start-page: 3261 year: 2014 ident: ref24 article-title: Distributed compressive CSIT estimation and feedback for FDD multi-user massive MIMO systems publication-title: IEEE Trans Signal Process doi: 10.1109/TSP.2014.2324991 – ident: ref29 doi: 10.1109/PIMRC.2019.8904332 – year: 2016 ident: ref21 article-title: Hierarchical multiscale recurrent neural networks publication-title: arXiv 1609 01704 – year: 2015 ident: ref44 publication-title: Keras – ident: ref2 doi: 10.1109/TVT.2019.2893928 – ident: ref23 doi: 10.1109/TSP.2015.2463260 – ident: ref12 doi: 10.1109/MSP.2004.1328091 – year: 2020 ident: ref38 article-title: DL-based CSI feedback and cooperative recovery in massive MIMO publication-title: arXiv 2003 03303 – ident: ref13 doi: 10.1017/CBO9781139030687 – ident: ref7 doi: 10.1109/TWC.2010.092810.091092 – year: 2014 ident: ref45 article-title: Adam: A method for stochastic optimization publication-title: arXiv 1412 6980 – year: 2020 ident: ref35 article-title: Pruning the pilots: Deep learning-based pilot design and channel estimation for MIMO-OFDM systems publication-title: arXiv 2006 11796 – ident: ref18 doi: 10.1109/TIT.2007.892784 – ident: ref33 doi: 10.1109/GLOCOM.2007.829 – ident: ref26 doi: 10.1109/LWC.2020.3019321 – ident: ref34 doi: 10.1109/LWC.2019.2962114 – year: 2016 ident: ref43 article-title: TensorFlow: Large-scale machine learning on heterogeneous distributed systems publication-title: arXiv 1603 04467 – year: 2013 ident: ref20 article-title: Estimating or propagating gradients through stochastic neurons for conditional computation publication-title: arXiv 1308 3432 – ident: ref22 doi: 10.1109/JSAC.2008.081002 – ident: ref32 doi: 10.1109/TWC.2015.2455980 – year: 2015 ident: ref46 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift publication-title: arXiv 1502 03167 – ident: ref30 doi: 10.1109/LCOMM.2020.2983018 – ident: ref37 doi: 10.1109/LCOMM.2018.2882829 – ident: ref8 doi: 10.1109/MCOM.2016.7402270 – ident: ref41 doi: 10.1109/JSTSP.2016.2520912 – ident: ref4 doi: 10.1109/ICASSP40776.2020.9054488 – ident: ref40 doi: 10.1109/TIT.2010.2046225 – ident: ref25 doi: 10.1109/WCNC.2012.6214417 – ident: ref36 doi: 10.1109/LWC.2018.2818160 – ident: ref15 doi: 10.1109/JSAIT.2020.2986467 – ident: ref9 doi: 10.1109/MCOM.2011.5783993 |
| SSID | ssj0017655 |
| Score | 2.673436 |
| Snippet | This paper shows that deep neural network (DNN) can be used for efficient and distributed channel estimation, quantization, feedback, and downlink multiuser... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 4044 |
| SubjectTerms | Artificial neural networks Channel estimation Deep learning deep neural network (DNN) distributed source coding (DSC) Downlink downlink precoding Estimation Feedback feedback frequency-division duplex (FDD) Frequency division duplexing Machine learning massive multiple-input multiple-output (MIMO) Precoding quantization Quantization (signal) Radio equipment Robust design Training |
| Title | Deep Learning for Distributed Channel Feedback and Multiuser Precoding in FDD Massive MIMO |
| URI | https://ieeexplore.ieee.org/document/9347820 https://www.proquest.com/docview/2549755573 |
| Volume | 20 |
| WOSCitedRecordID | wos000671527500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2248 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017655 issn: 1536-1276 databaseCode: RIE dateStart: 20020101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLY2xAEOvAZivJQDFyS6jSZtmiPamOCwscMQE5eqSV00MXXTGPx-4rSrkEBI3HpIqtaOYzuOvw_gkkeZ0txoz3o_7QllhJfYRMjrZIE2OksI0MSRTcjhMJpM1KgG11UvDCK6y2fYokdXy0_n5oOOytqKC4J3q0NdSln0alUVAxk6hlNrwMQrI6uSZEe1x89dmwj6Ny1Ct_LLA5S1C3KcKj82Yudd-rv_-6492CmjSHZbqH0fapgfwPY3bMEGvPQQF6yET31lNjZlPQLJJX4rTBl1FeQ4Y33rvXRi3liSp8x149KxBRtRokxujU1z1u_12MAG2XZjZIOHweMhPPXvxt17ryRS8AwP5MpDxZVJJBofQxMGJkIuVMr9jCep1sYKKfO5wE6YaCFlYCM4ae3SRAKFxCjR_Ag28nmOx8BCxQPr4LQ1dCOUDnSWYiZMZJPRjBhvmtBeyzY2Jco4kV3MYpdtdFRstRGTNuJSG024qmYsCoSNP8Y2SPrVuFLwTThbqy8uTfA9pszX_ksg-cnvs05hi95d3L09g43V8gPPYdN8rqbvywu3ur4AoPDLNA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZ4ScCB10AMBuTABYluXZM2zRFtTCC2wWGIiUvVpC5CoIJg8PuJs65CAiFx6yFRWzuO7Tj-PoBjHudKc6M96_20J5QRXmoTIc_PQ210nhKgiSObkMNhPB6rmzk4rXphENFdPsMmPbpafvZiPuiorKW4IHi3eVgMhQja026tqmYgI8dxak2YmGVkVZT0VWt017GpYNBuEr5VUB6hzJyQY1X5sRU7_9Jb_9-XbcBaGUeys6niN2EOiy1Y_YYuWIP7LuIrKwFUH5iNTlmXYHKJ4QozRn0FBT6znvVfOjVPLC0y5vpx6eCC3VCqTI6NPRas1-2ygQ2z7dbIBpeD62247Z2POhdeSaXgGR7KiYeKK5NKNAFGJgpNjFyojAc5TzOtjRVSHnCBfpRqIWVoYzhpLdPEAoXEONV8BxaKlwJ3gUWKh9bFaWvqRigd6jzDXJjYpqM5cd7UoTWTbWJKnHGiu3hOXL7hq8RqIyFtJKU26nBSzXidYmz8MbZG0q_GlYKvQ2OmvqQ0wveEcl_7L6Hke7_POoLli9Ggn_Qvh1f7sELvmd7EbcDC5O0DD2DJfE4e398O3Ur7Al7bzns |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+for+Distributed+Channel+Feedback+and+Multiuser+Precoding+in+FDD+Massive+MIMO&rft.jtitle=IEEE+transactions+on+wireless+communications&rft.au=Sohrabi%2C+Foad&rft.au=Attiah%2C+Kareem+M.&rft.au=Yu%2C+Wei&rft.date=2021-07-01&rft.issn=1536-1276&rft.eissn=1558-2248&rft.volume=20&rft.issue=7&rft.spage=4044&rft.epage=4057&rft_id=info:doi/10.1109%2FTWC.2021.3055202&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TWC_2021_3055202 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1276&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1276&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1276&client=summon |