Deep Learning for Distributed Channel Feedback and Multiuser Precoding in FDD Massive MIMO

This paper shows that deep neural network (DNN) can be used for efficient and distributed channel estimation, quantization, feedback, and downlink multiuser precoding for a frequency-division duplex massive multiple-input multiple-output system in which a base station (BS) serves multiple mobile use...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on wireless communications Ročník 20; číslo 7; s. 4044 - 4057
Hlavní autoři: Sohrabi, Foad, Attiah, Kareem M., Yu, Wei
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.07.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1536-1276, 1558-2248
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper shows that deep neural network (DNN) can be used for efficient and distributed channel estimation, quantization, feedback, and downlink multiuser precoding for a frequency-division duplex massive multiple-input multiple-output system in which a base station (BS) serves multiple mobile users, but with rate-limited feedback from the users to the BS. A key observation is that the multiuser channel estimation and feedback problem can be thought of as a distributed source coding problem. In contrast to the traditional approach where the channel state information (CSI) is estimated and quantized at each user independently, this paper shows that a joint design of pilots and a new DNN architecture, which maps the received pilots directly into feedback bits at the user side then maps the feedback bits from all the users directly into the precoding matrix at the BS, can significantly improve the overall performance. This paper further proposes robust design strategies with respect to channel parameters and also a generalizable DNN architecture for varying number of users and number of feedback bits. Numerical results show that the DNN-based approach with short pilot sequences and very limited feedback overhead can already approach the performance of conventional linear precoding schemes with full CSI.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1536-1276
1558-2248
DOI:10.1109/TWC.2021.3055202