Cooperative RSS-Based Localization in Wireless Sensor Networks Using Relative Error Estimation and Semidefinite Programming

A new cooperative received signal strength-based localization algorithm is proposed which employs relative error estimation and semidefinite programming (SDP). First, the log-normal shadowing RSS measurement model is transformed into an equivalent multiplicative model. Then, a relative error estimat...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on vehicular technology Ročník 68; číslo 1; s. 483 - 497
Hlavní autoři: Wang, Zengfeng, Zhang, Hao, Lu, Tingting, Gulliver, T. Aaron
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.01.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-9545, 1939-9359
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A new cooperative received signal strength-based localization algorithm is proposed which employs relative error estimation and semidefinite programming (SDP). First, the log-normal shadowing RSS measurement model is transformed into an equivalent multiplicative model. Then, a relative error estimation criterion is used with this model to develop a nonconvex estimator to approximate the maximum likelihood solution. Finally, semidefinite relaxation is applied to the nonconvex estimator to obtain an SDP estimator. The proposed algorithm is first derived for noncooperative RSS-based localization and then extended to the cooperative case. The Cramer-Rao lower bound is derived for cooperative RSS-based localization. Performance results are presented, which demonstrate that the proposed SDP estimator provides a significant improvement over existing localization methods.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9545
1939-9359
DOI:10.1109/TVT.2018.2880991