Reeb spaces of smooth functions on manifolds II

The Reeb space of a continuous function on a topological space is the space of connected components of the level sets. In this paper we characterize those smooth functions on closed manifolds whose Reeb spaces have the structure of a finite graph. We also give several explicit examples of smooth fun...

Full description

Saved in:
Bibliographic Details
Published in:Research in the mathematical sciences Vol. 11; no. 2
Main Author: Saeki, Osamu
Format: Journal Article
Language:English
Published: Cham Springer International Publishing 01.06.2024
Subjects:
ISSN:2522-0144, 2197-9847
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The Reeb space of a continuous function on a topological space is the space of connected components of the level sets. In this paper we characterize those smooth functions on closed manifolds whose Reeb spaces have the structure of a finite graph. We also give several explicit examples of smooth functions on closed manifolds such that they themselves or their Reeb spaces have some interesting properties.
AbstractList The Reeb space of a continuous function on a topological space is the space of connected components of the level sets. In this paper we characterize those smooth functions on closed manifolds whose Reeb spaces have the structure of a finite graph. We also give several explicit examples of smooth functions on closed manifolds such that they themselves or their Reeb spaces have some interesting properties.
ArticleNumber 24
Author Saeki, Osamu
Author_xml – sequence: 1
  givenname: Osamu
  orcidid: 0000-0003-1679-9948
  surname: Saeki
  fullname: Saeki, Osamu
  email: saeki@imi.kyushu-u.ac.jp
  organization: Institute of Mathematics for Industry, Kyushu University
BookMark eNp9j8tqwzAQRUVJoWmaH-jKP6Bm9LAlL0vowxAolOyFLEutgy0FyVk0X1-lyaqLrGYY5lzuuUczH7xF6JHAEwEQq8ShkgID5RiAswofb9CcklrgWnIxy3tJKQbC-R1aprQDACIqxhnM0erT2rZIe21sKoIr0hjC9F24gzdTH3y--WLUvndh6FLRNA_o1ukh2eVlLtD29WW7fsebj7dm_bzBhpViwq2jpXUgW8qtJVbwXMwwKyXjjkHX5a66Zka0VSVZV1OjqWhZy50wtCo5WyB5jjUxpBStU6af9KnRFHU_KALqpK7O6irHqT91dcwo_YfuYz_q-HMdYmco5Wf_ZaPahUP02fAa9Qsxd21v
CitedBy_id crossref_primary_10_1016_j_topol_2025_109462
Cites_doi 10.1090/S0002-9947-1934-1501735-3
10.1007/s10587-015-0195-0
10.1007/b100393
10.1007/s10587-013-0034-0
10.1093/imrn/rnaa301
10.1112/jlms/2.Part_4.589
10.1112/jlms/s2-3.3.392
10.1515/ms-2016-0298
10.2298/FIL1907031G
10.1007/BFb0075066
10.13140/RG.2.2.27662.43844
10.1007/s00454-017-9957-9
10.1112/plms/s2-41.3.191
10.1093/qmath/haaa064
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s40687-024-00436-z
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2197-9847
ExternalDocumentID 10_1007_s40687_024_00436_z
GrantInformation_xml – fundername: Japan Society for the Promotion of Science
  grantid: JP22K18267, JP23H05437
  funderid: http://dx.doi.org/10.13039/501100001691
GroupedDBID -EM
0R~
406
5VS
AAAVM
AACDK
AAHNG
AAJBT
AASML
AATNV
AATVU
AAUYE
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABSXP
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADINQ
ADKNI
ADKPE
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEJRE
AEMSY
AESKC
AFBBN
AFQWF
AGDGC
AGJBK
AGMZJ
AGQEE
AGRTI
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AILAN
AITGF
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ASPBG
AXYYD
BGNMA
C24
C6C
CSCUP
DPUIP
EBLON
EBS
EJD
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
GROUPED_DOAJ
IKXTQ
IWAJR
J-C
JZLTJ
KOV
LLZTM
M4Y
M~E
NPVJJ
NQJWS
NU0
O9J
OK1
PT4
ROL
RSV
SISQX
SJYHP
SNE
SNPRN
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UOJIU
UTJUX
UZXMN
VFIZW
Z88
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
ID FETCH-LOGICAL-c357t-bf25ef08b24ee1e74004c3e8834f30dd024a93c7b6683d92ca27b3b4f7c26543
IEDL.DBID RSV
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001183533300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2522-0144
IngestDate Tue Nov 18 22:28:57 EST 2025
Sat Nov 29 06:11:21 EST 2025
Fri Feb 21 02:41:33 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords 54C30
57R45
Reeb space
Reeb graph
Smooth function
Secondary 58K30
Primary 58K05
58K15
Peano continuum
57R70
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-bf25ef08b24ee1e74004c3e8834f30dd024a93c7b6683d92ca27b3b4f7c26543
ORCID 0000-0003-1679-9948
ParticipantIDs crossref_citationtrail_10_1007_s40687_024_00436_z
crossref_primary_10_1007_s40687_024_00436_z
springer_journals_10_1007_s40687_024_00436_z
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationTitle Research in the mathematical sciences
PublicationTitleAbbrev Res Math Sci
PublicationYear 2024
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
References SaekiOReeb spaces of smooth functions on manifoldsInt. Math. Res. Not.202220221187408768442584810.1093/imrn/rnaa301
SharkoVVAbout Kronrod–Reeb graph of a function on a manifoldMethods Funct. Anal. Topol.2006123893962279875
SaekiOTopology of Singular Fibers of Differentiable Maps2004BerlinSpringer
GelbukhIThe co-rank of the fundamental group: the direct product, the first Betti number, and the topology of foliationsMath. Slovaca201767645656366074610.1515/ms-2016-0298
GelbukhILoops in Reeb graphs of n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-manifoldsDiscrete Comput. Geom.201859843863380230710.1007/s00454-017-9957-9
GelbukhIClose cohomologous Morse forms with compact leavesCzechoslovak Math. J.201363138515528307397510.1007/s10587-013-0034-0
WhitneyHAnalytic extensions of differentiable functions defined in closed setsTrans. Am. Math. Soc.1934366389150173510.1090/S0002-9947-1934-1501735-3
ReebGSur les points singuliers d’une forme de Pfaff complètement intégrable ou d’une fonction numériqueC. R. Hebd. Seances Acad. Sci.1946222847849
GelbukhIApproximation of metric spaces by Reeb graphs: cycle rank of a Reeb graph, the co-rank of the fundamental group, and large components of level sets on Riemannian manifoldsFilomat20193320312049403635910.2298/FIL1907031G
Bröcker, T., Jänich, K.: Introduction to Differential Topology. Cambridge University Press, Cambridge (Translated from the German by C.B. Thomas and M.J. Thomas) (1982)
LevineHClassifying Immersions into R4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R} }^{4}$$\end{document} Over Stable Maps of 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3$$\end{document}-Manifolds into R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R} }^2$$\end{document}1985BerlinSpringer
WardAJThe topological characterisation of an open linear intervalProc. Lond. Math. Soc.1936S2–41191198157711010.1112/plms/s2-41.3.191
GelbukhICo-rank and Betti number of a groupCzechoslovak Math. J.201565140565567336044610.1007/s10587-015-0195-0
WillardSGeneral Topology1970ReadingAddison-Wesley Publishing Co.
FranklinSPKrishnaraoGVOn the topological characterization of the real line: an addendumJ. Lond. Math. Soc.19712339228234110.1112/jlms/s2-3.3.392
KirwanFPeningtonGMorse theory without non-degeneracyQuart. J. Math.202172455514427139310.1093/qmath/haaa064
FranklinSPKrishnaraoGVOn the topological characterisation of the real lineJ. Lond. Math. Soc.19702258959126885610.1112/jlms/2.Part_4.589
GelbukhIOn the topology of the Reeb graphPublicationes Mathematicae Debrecen2024474469210.13140/RG.2.2.27662.43844
I Gelbukh (436_CR4) 2013; 63
O Saeki (436_CR13) 2004
SP Franklin (436_CR2) 1970; 2
SP Franklin (436_CR3) 1971; 2
I Gelbukh (436_CR5) 2015; 65
G Reeb (436_CR12) 1946; 222
436_CR1
I Gelbukh (436_CR7) 2018; 59
VV Sharko (436_CR15) 2006; 12
AJ Ward (436_CR16) 1936; S2–41
H Whitney (436_CR17) 1934; 36
O Saeki (436_CR14) 2022; 2022
H Levine (436_CR11) 1985
I Gelbukh (436_CR6) 2017; 67
F Kirwan (436_CR10) 2021; 72
I Gelbukh (436_CR8) 2019; 33
S Willard (436_CR18) 1970
I Gelbukh (436_CR9) 2024
References_xml – reference: GelbukhIThe co-rank of the fundamental group: the direct product, the first Betti number, and the topology of foliationsMath. Slovaca201767645656366074610.1515/ms-2016-0298
– reference: KirwanFPeningtonGMorse theory without non-degeneracyQuart. J. Math.202172455514427139310.1093/qmath/haaa064
– reference: WardAJThe topological characterisation of an open linear intervalProc. Lond. Math. Soc.1936S2–41191198157711010.1112/plms/s2-41.3.191
– reference: SharkoVVAbout Kronrod–Reeb graph of a function on a manifoldMethods Funct. Anal. Topol.2006123893962279875
– reference: GelbukhIClose cohomologous Morse forms with compact leavesCzechoslovak Math. J.201363138515528307397510.1007/s10587-013-0034-0
– reference: GelbukhILoops in Reeb graphs of n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-manifoldsDiscrete Comput. Geom.201859843863380230710.1007/s00454-017-9957-9
– reference: WhitneyHAnalytic extensions of differentiable functions defined in closed setsTrans. Am. Math. Soc.1934366389150173510.1090/S0002-9947-1934-1501735-3
– reference: FranklinSPKrishnaraoGVOn the topological characterization of the real line: an addendumJ. Lond. Math. Soc.19712339228234110.1112/jlms/s2-3.3.392
– reference: LevineHClassifying Immersions into R4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R} }^{4}$$\end{document} Over Stable Maps of 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3$$\end{document}-Manifolds into R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R} }^2$$\end{document}1985BerlinSpringer
– reference: GelbukhIApproximation of metric spaces by Reeb graphs: cycle rank of a Reeb graph, the co-rank of the fundamental group, and large components of level sets on Riemannian manifoldsFilomat20193320312049403635910.2298/FIL1907031G
– reference: WillardSGeneral Topology1970ReadingAddison-Wesley Publishing Co.
– reference: ReebGSur les points singuliers d’une forme de Pfaff complètement intégrable ou d’une fonction numériqueC. R. Hebd. Seances Acad. Sci.1946222847849
– reference: SaekiOReeb spaces of smooth functions on manifoldsInt. Math. Res. Not.202220221187408768442584810.1093/imrn/rnaa301
– reference: GelbukhICo-rank and Betti number of a groupCzechoslovak Math. J.201565140565567336044610.1007/s10587-015-0195-0
– reference: Bröcker, T., Jänich, K.: Introduction to Differential Topology. Cambridge University Press, Cambridge (Translated from the German by C.B. Thomas and M.J. Thomas) (1982)
– reference: GelbukhIOn the topology of the Reeb graphPublicationes Mathematicae Debrecen2024474469210.13140/RG.2.2.27662.43844
– reference: FranklinSPKrishnaraoGVOn the topological characterisation of the real lineJ. Lond. Math. Soc.19702258959126885610.1112/jlms/2.Part_4.589
– reference: SaekiOTopology of Singular Fibers of Differentiable Maps2004BerlinSpringer
– volume: 36
  start-page: 63
  year: 1934
  ident: 436_CR17
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-1934-1501735-3
– volume: 65
  start-page: 565
  issue: 140
  year: 2015
  ident: 436_CR5
  publication-title: Czechoslovak Math. J.
  doi: 10.1007/s10587-015-0195-0
– volume: 222
  start-page: 847
  year: 1946
  ident: 436_CR12
  publication-title: C. R. Hebd. Seances Acad. Sci.
– volume-title: Topology of Singular Fibers of Differentiable Maps
  year: 2004
  ident: 436_CR13
  doi: 10.1007/b100393
– volume: 63
  start-page: 515
  issue: 138
  year: 2013
  ident: 436_CR4
  publication-title: Czechoslovak Math. J.
  doi: 10.1007/s10587-013-0034-0
– volume: 2022
  start-page: 8740
  issue: 11
  year: 2022
  ident: 436_CR14
  publication-title: Int. Math. Res. Not.
  doi: 10.1093/imrn/rnaa301
– volume-title: General Topology
  year: 1970
  ident: 436_CR18
– ident: 436_CR1
– volume: 2
  start-page: 589
  issue: 2
  year: 1970
  ident: 436_CR2
  publication-title: J. Lond. Math. Soc.
  doi: 10.1112/jlms/2.Part_4.589
– volume: 2
  start-page: 392
  issue: 3
  year: 1971
  ident: 436_CR3
  publication-title: J. Lond. Math. Soc.
  doi: 10.1112/jlms/s2-3.3.392
– volume: 67
  start-page: 645
  year: 2017
  ident: 436_CR6
  publication-title: Math. Slovaca
  doi: 10.1515/ms-2016-0298
– volume: 33
  start-page: 2031
  year: 2019
  ident: 436_CR8
  publication-title: Filomat
  doi: 10.2298/FIL1907031G
– volume: 12
  start-page: 389
  year: 2006
  ident: 436_CR15
  publication-title: Methods Funct. Anal. Topol.
– volume-title: Classifying Immersions into $${\mathbb{R} }^{4}$$ Over Stable Maps of $$3$$-Manifolds into $${\mathbb{R} }^2$$
  year: 1985
  ident: 436_CR11
  doi: 10.1007/BFb0075066
– year: 2024
  ident: 436_CR9
  publication-title: Publicationes Mathematicae Debrecen
  doi: 10.13140/RG.2.2.27662.43844
– volume: 59
  start-page: 843
  year: 2018
  ident: 436_CR7
  publication-title: Discrete Comput. Geom.
  doi: 10.1007/s00454-017-9957-9
– volume: S2–41
  start-page: 191
  year: 1936
  ident: 436_CR16
  publication-title: Proc. Lond. Math. Soc.
  doi: 10.1112/plms/s2-41.3.191
– volume: 72
  start-page: 455
  year: 2021
  ident: 436_CR10
  publication-title: Quart. J. Math.
  doi: 10.1093/qmath/haaa064
SSID ssj0001763430
ssib053846527
Score 2.3157678
Snippet The Reeb space of a continuous function on a topological space is the space of connected components of the level sets. In this paper we characterize those...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
SubjectTerms Applications of Mathematics
Computational Mathematics and Numerical Analysis
Mathematics
Mathematics and Statistics
Title Reeb spaces of smooth functions on manifolds II
URI https://link.springer.com/article/10.1007/s40687-024-00436-z
Volume 11
WOSCitedRecordID wos001183533300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Journals New Starts & Take-Overs Collection
  customDbUrl:
  eissn: 2197-9847
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001763430
  issn: 2522-0144
  databaseCode: RSV
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60etCDb7G-2IM3XUz3kU2OIhZ7sEgt0lvY7AMETaSpHvrrnd0mgYIU9D7ZLLMz880-5huErrhQBrJWQXydIuFUJUQBDBMuRa5EZDxmhWYTcjhMJpP0uS4Kq5rX7s2VZIjUbbEbQA84BGAKCbzpZL6ONgDupH_IN3p5bawIPJjHoua2DCct4EI8NB2hkGwQv4Woq2d-H3YZoZavRwPq9Hf_N989tFNnmfhuYRb7aM0WB2j7qaVorQ7R7cjaHEM8gUCBS4erjxIWDXucC6aIywJ7bgxXvpsKDwZHaNx_GN8_krp7AtFMyBnJHRXWRUlOubU9K72zamaThHHHImNgYiplWuZxnDCTUq2ozFnOndTUF5weo05RFvYE4RjSCmOtSFxPcWUiz-gOaaVOjWM6prSLeo3CMl0zi_sGF-9Zy4kcdJHBL7Ogi2zeRdftN58LXo2V0jeNjrPax6oV4qd_Ez9DWzQskz9bOUed2fTLXqBN_T17q6aXwbh-AFnzxJo
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60CurBt1ifOXjT4DaPfRxFLC22RbRIb0s2DxDqrnSrh_56k3S3IEhB79ndMJmZ70uy8w3AFeNCWdbKsatTxIyIGAsLw5hFPBM8UA6zfLOJaDCIR6PkqSoKK-u_3esrSZ-pF8VuFnpsQFhMwV43Hc9WYY0Ry_DdHv3ltfYiG8Es5JW2pT9psSHEfNMRYskGdluIqnrm99f-RKif16Meddo7_5vvLmxXLBPdzd1iD1Z0vg9b_YVEa3kAt89aZ8jmE5soUGFQ-V7YRUMO57wroiJHThvDFGNVom73EIbth-F9B1fdE7CkPJrizBCuTRBnhGnd0pELVkl1HFNmaKCUnZhIqIyyMIypSogUJMpoxkwkiSs4PYJGXuT6GFBoaYXSmsemJZhQgVN0t7RSJspQGRLShFZtsFRWyuKuwcU4XWgie1uk9pOpt0U6a8L14pmPua7G0tE3tY3TKsbKJcNP_jb8EjY6w34v7XUHj6ewSfySuXOWM2hMJ5_6HNbl1_StnFx4R_sGm0XHfg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JSwMxFH5oFdGDu1jXHLxp6DTLLEdRi0UtRYt4G2aygFBnSmf00F9vks4UC1IQ75lJeHkv38vyfQ_ggvFEmqyVY8tTxIwkIU4MDGMW8DThnrSY5YpNBL1e-PYW9X-w-N1r9_pKcsppsCpNWdkaSd2aEd8MDJngMPiCnYY6nizDCrPP5ex-_eW19igTzcznlc6lO3Ux4cRcARJiEg9stxMVk-b3386j1fxVqUOgztb_x74Nm1X2ia6n7rIDSyrbhY2nmXRrsQetZ6VSZNYZs4CgXKPiIzeTiSz-ORdFeYasZobOh7JA3e4-DDp3g5t7XFVVwILyoMSpJlxpL0wJU6qtAhvEgqowpExTT0ozsCSiIkh9P6QyIiIhQUpTpgNBLBH1ABpZnqlDQL5JN6RSPNTthCXSs0rvJt0UkdRU-IQ0oV0bLxaV4rgtfDGMZ1rJzhax6TJ2tognTbicfTOa6m0sbH1V2zuuYq9Y0Pzob83PYa1_24kfu72HY1gnbsbs8csJNMrxpzqFVfFVvhfjM-dz35vp0Fk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reeb+spaces+of+smooth+functions+on+manifolds+II&rft.jtitle=Research+in+the+mathematical+sciences&rft.au=Saeki%2C+Osamu&rft.date=2024-06-01&rft.issn=2522-0144&rft.eissn=2197-9847&rft.volume=11&rft.issue=2&rft_id=info:doi/10.1007%2Fs40687-024-00436-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s40687_024_00436_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2522-0144&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2522-0144&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2522-0144&client=summon