Reeb spaces of smooth functions on manifolds II

The Reeb space of a continuous function on a topological space is the space of connected components of the level sets. In this paper we characterize those smooth functions on closed manifolds whose Reeb spaces have the structure of a finite graph. We also give several explicit examples of smooth fun...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Research in the mathematical sciences Ročník 11; číslo 2
Hlavní autor: Saeki, Osamu
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 01.06.2024
Témata:
ISSN:2522-0144, 2197-9847
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The Reeb space of a continuous function on a topological space is the space of connected components of the level sets. In this paper we characterize those smooth functions on closed manifolds whose Reeb spaces have the structure of a finite graph. We also give several explicit examples of smooth functions on closed manifolds such that they themselves or their Reeb spaces have some interesting properties.
ISSN:2522-0144
2197-9847
DOI:10.1007/s40687-024-00436-z