A New Family of Divergences Originating From Model Adequacy Tests and Application to Robust Statistical Inference
Minimum divergence methods are popular tools in a variety of statistical applications. We consider tubular model adequacy tests, and demonstrate that the new divergences that are generated in the process are very useful in robust statistical inference. In particular, we show that the family of <i...
Uložené v:
| Vydané v: | IEEE transactions on information theory Ročník 64; číslo 8; s. 5581 - 5591 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
01.08.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 0018-9448, 1557-9654 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Minimum divergence methods are popular tools in a variety of statistical applications. We consider tubular model adequacy tests, and demonstrate that the new divergences that are generated in the process are very useful in robust statistical inference. In particular, we show that the family of <inline-formula> <tex-math notation="LaTeX">S </tex-math></inline-formula>-divergences can be alternatively developed using the tubular model adequacy tests; a further application of the paradigm generates a larger superfamily of divergences. We describe the properties of this larger class and its potential applications in robust inference. Along the way, the failure of the first order influence function analysis in capturing the robustness of these procedures is also established. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0018-9448 1557-9654 |
| DOI: | 10.1109/TIT.2018.2794537 |