Deep learning-based classification of eye diseases using Convolutional Neural Network for OCT images

Deep learning shows promising results in extracting useful information from medical images. The proposed work applies a Convolutional Neural Network (CNN) on retinal images to extract features that allow early detection of ophthalmic diseases. Early disease diagnosis is critical to retinal treatment...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in computer science (Lausanne) Vol. 5
Main Authors: Elkholy, Mohamed, Marzouk, Marwa A.
Format: Journal Article
Language:English
Published: Frontiers Media S.A 18.01.2024
Subjects:
ISSN:2624-9898, 2624-9898
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Deep learning shows promising results in extracting useful information from medical images. The proposed work applies a Convolutional Neural Network (CNN) on retinal images to extract features that allow early detection of ophthalmic diseases. Early disease diagnosis is critical to retinal treatment. Any damage that occurs to retinal tissues that cannot be recovered can result in permanent degradation or even complete loss of sight. The proposed deep-learning algorithm detects three different diseases from features extracted from Optical Coherence Tomography (OCT) images. The deep-learning algorithm uses CNN to classify OCT images into four categories. The four categories are Normal retina, Diabetic Macular Edema (DME), Choroidal Neovascular Membranes (CNM), and Age-related Macular Degeneration (AMD). The proposed work uses publicly available OCT retinal images as a dataset. The experimental results show significant enhancement in classification accuracy while detecting the features of the three listed diseases.
AbstractList Deep learning shows promising results in extracting useful information from medical images. The proposed work applies a Convolutional Neural Network (CNN) on retinal images to extract features that allow early detection of ophthalmic diseases. Early disease diagnosis is critical to retinal treatment. Any damage that occurs to retinal tissues that cannot be recovered can result in permanent degradation or even complete loss of sight. The proposed deep-learning algorithm detects three different diseases from features extracted from Optical Coherence Tomography (OCT) images. The deep-learning algorithm uses CNN to classify OCT images into four categories. The four categories are Normal retina, Diabetic Macular Edema (DME), Choroidal Neovascular Membranes (CNM), and Age-related Macular Degeneration (AMD). The proposed work uses publicly available OCT retinal images as a dataset. The experimental results show significant enhancement in classification accuracy while detecting the features of the three listed diseases.
Author Elkholy, Mohamed
Marzouk, Marwa A.
Author_xml – sequence: 1
  givenname: Mohamed
  surname: Elkholy
  fullname: Elkholy, Mohamed
– sequence: 2
  givenname: Marwa A.
  surname: Marzouk
  fullname: Marzouk, Marwa A.
BookMark eNp9kMtOwzAQRS0EEq_-ACv_QIofcRIvUXlKCDZlbY2dceWSxpWdgvh70gASYsHqjmbm3hmdU3LYxx4JueBsLmWjL72Lm-1cMCHnXCghtDogJ6ISZaEb3Rz-qo_JLOc1Y0wozlVTn5D2GnFLO4TUh35VWMjYUtdBzsEHB0OIPY2e4gfSNmQcx5nu8rhKF7F_i91uvwEdfcJdmmR4j-mV-pjo82JJwwZWmM_JkYcu4-xbz8jL7c1ycV88Pt89LK4eCydVPRS2sUz4Fh06YLoGa7kTtZaOg_ISnKxYrTyzWPqm1LW03rFSa-tsrXFsyjPy8JXbRlibbRqvpw8TIZipEdPKQBqC69CAKr3TqKpKyLIR2rbKcg0gNeMtsHLMar6yXIo5J_TGhWHiMSQIneHM7OGbCb7Zwzff8Eer-GP9eeUf0yf6g41B
CitedBy_id crossref_primary_10_38124_ijisrt_25aug280
crossref_primary_10_1038_s41598_024_82839_0
crossref_primary_10_5753_jbcs_2025_5177
crossref_primary_10_1016_j_compbiomed_2025_111021
crossref_primary_10_1007_s41666_024_00182_5
crossref_primary_10_1007_s10278_025_01676_3
crossref_primary_10_3390_diagnostics15070916
crossref_primary_10_3390_sym17050768
Cites_doi 10.1007/978-3-030-44289-7_59
10.18201/ijisae.2021.236
10.1097/00055735-199006000-00008
10.1097/01.icu.0000192520.48411.fa
10.14569/IJACSA.2021.0120431
10.1142/S0219622022500249
10.1016/j.cmpb.2018.02.001
10.1186/1471-2415-11-32
10.1109/MITP.2018.2889268
10.11591/ijeecs.v26.i1.pp394-403
10.1136/amiajnl-2011-000456
10.1001/jama.2017.18152
10.1016/j.preteyeres.2019.04.003
10.1167/tvst.9.2.35
10.36227/techrxiv.12431081.v2
10.1155/2019/4061313
10.1038/s41591-018-0029-3
10.1155/2016/951935010.1155/2016/6215745
10.1001/jamaophthalmol.2017.3782
10.1109/TMI.2019.2901398
10.1016/j.compmedimag.2020.101818
10.1186/s40662-020-00183-6
10.1007/s13755-020-00125-5
10.1142/S0129065722500599
10.1109/JBHI.2021.3066208
10.1109/BICITS51482.2021.9509920
10.1109/ICSIPA.2017.8120662
10.1109/MITP.2018.043141666
10.1016/j.ecoinf.2020.101093
10.1007/s00530-021-00769-7
10.1016/B978-0-12-819740-0.00002-4
10.1109/SMC42975.2020.9283218
10.1142/S0219622022500602
10.1016/j.cmpb.2017.10.017
10.1109/ICSIPA.2017.8120661
10.1097/APO.0000000000000405
10.2147/OPTH.S321591
10.1016/j.bspc.2022.104176
10.12720/jait.14.4.838-845
10.1109/TENCON.2019.8929666
10.1016/j.jtos.2021.11.004
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3389/fcomp.2023.1252295
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2624-9898
ExternalDocumentID oai_doaj_org_article_a54fc9e566234829bd5b19aa3901da04
10_3389_fcomp_2023_1252295
GroupedDBID 9T4
AAFWJ
AAYXX
ADMLS
AFPKN
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
M~E
OK1
ID FETCH-LOGICAL-c357t-b8b02fdececa097abb1c2793c1a5f3ac36075f0be4f84973bfc0499bcb79ee4f3
IEDL.DBID DOA
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001153677600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2624-9898
IngestDate Fri Oct 03 12:42:31 EDT 2025
Tue Nov 18 22:01:51 EST 2025
Sat Nov 29 02:12:00 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-b8b02fdececa097abb1c2793c1a5f3ac36075f0be4f84973bfc0499bcb79ee4f3
OpenAccessLink https://doaj.org/article/a54fc9e566234829bd5b19aa3901da04
ParticipantIDs doaj_primary_oai_doaj_org_article_a54fc9e566234829bd5b19aa3901da04
crossref_citationtrail_10_3389_fcomp_2023_1252295
crossref_primary_10_3389_fcomp_2023_1252295
PublicationCentury 2000
PublicationDate 2024-01-18
PublicationDateYYYYMMDD 2024-01-18
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-18
  day: 18
PublicationDecade 2020
PublicationTitle Frontiers in computer science (Lausanne)
PublicationYear 2024
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Wang (B38) 2021; 25
Akil (B1) 2021
Hasan (B14) 2021
Qin (B29) 2020; 58
Boldt (B7) 1990; 1
Al-Mohtaseb (B2) 2021; 2021
Tayal (B33) 2021; 7
Zobair (B43) 2022; 21
Ran (B30) 2021; 10
Ghosh (B12) 2023
Elkholy (B10) 2018; 20
Le (B16) 2020; 9
Mohamed (B23) 2021; 12
Ginsburg (B13) 2006; 17
Prasad (B28) 2019
Ting (B36) 2019; 72
Mohamed (B22) 2022; 26
Waudby (B40) 2011; 11
Farooq (B11) 2015
Ting (B35) 2018; 24
Prabhakar (B27) 2021; 87
Bogunovi (B6) 2019; 38
Zhao (B42) 2020; 36
Awais (B5) 2017
Burlina (B8) 2017; 135
Peissig (B25) 2012; 19
An (B4) 2019
Madbouly (B17) 2020
Sarki (B31) 2020; 8
Ting (B34) 2017; 318
Moccia (B19) 2018; 158
Storås (B32) 2022; 23
Alqudah (B3) 2021; 9
Chan (B9) 2017
Karthik (B15) 2023; 79
Pinazo-Durán (B26) 2016; 2016
Orlando (B24) 2018; 153
Zhang (B41) 2020
Tong (B37) 2020; 7
Wang (B39) 2023
Mohamed (B21) 2019; 21
Marzuok (B18) 2023; 14
Mohamed (B20) 2015
References_xml – volume-title: Proceedings of the International Conference on Artificial Intelligence and Computer Vision, AICV 2020, Advances in Intelligent Systems and Computing, vol. 1,153
  year: 2020
  ident: B17
  article-title: “Predicting stock market trends for Japanese candlestick using cloud model,”
  doi: 10.1007/978-3-030-44289-7_59
– volume: 9
  start-page: 91
  year: 2021
  ident: B3
  article-title: Artificial intelligence hybrid system for enhancing retinal diseases classification using automated deep features extracted from OCT images
  publication-title: Int. J. Intell. Syst. Appl. Eng.
  doi: 10.18201/ijisae.2021.236
– volume: 1
  start-page: 247
  year: 1990
  ident: B7
  article-title: Age-related macular degeneration
  publication-title: Curr. Opin. Ophthalmol.
  doi: 10.1097/00055735-199006000-00008
– volume: 17
  start-page: 19
  year: 2006
  ident: B13
  article-title: Contrast sensitivity, determining the visual quality and function of cataract, intraocular lenses and refractive surgery
  publication-title: Curr. Opin. Ophthalmol
  doi: 10.1097/01.icu.0000192520.48411.fa
– volume: 12
  start-page: 2021
  year: 2021
  ident: B23
  article-title: Efficient security model for RDF files used in IoT applications
  publication-title: Int. J. Adv. Comput. Sci. Appl.
  doi: 10.14569/IJACSA.2021.0120431
– volume: 21
  start-page: 1555
  year: 2022
  ident: B43
  article-title: Combining Deep Neural Network and PLS-SEM to predict patients' continuity with telemedicine
  publication-title: Int. J. Informat. Technol. Decision Mak.
  doi: 10.1142/S0219622022500249
– volume: 158
  start-page: 71
  year: 2018
  ident: B19
  article-title: Blood vessel segmentation algorithms-review of methods, datasets and evaluation metrics
  publication-title: Comput. Methods Progr. Biomed
  doi: 10.1016/j.cmpb.2018.02.001
– volume: 11
  start-page: 32
  year: 2011
  ident: B40
  article-title: Cataract research using electronic health records
  publication-title: BMC Ophthalmol
  doi: 10.1186/1471-2415-11-32
– volume: 21
  start-page: 57
  year: 2019
  ident: B21
  article-title: Framework for interaction between databases and microservice architecture
  publication-title: IT Professional
  doi: 10.1109/MITP.2018.2889268
– volume: 26
  start-page: 394
  year: 2022
  ident: B22
  article-title: Light weight serverless computing at fog nodes for internet of things systems
  publication-title: Indonesian J. Electr. Eng. Comput. Sci.
  doi: 10.11591/ijeecs.v26.i1.pp394-403
– volume: 19
  start-page: 225
  year: 2012
  ident: B25
  article-title: Importance of multi-modal approaches to eeffectively identify cataract cases from electronic health records
  publication-title: J. Am. Med. Inf. Assoc
  doi: 10.1136/amiajnl-2011-000456
– volume: 318
  start-page: 2211
  year: 2017
  ident: B34
  article-title: Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes
  publication-title: J. Am. Med. Assoc.
  doi: 10.1001/jama.2017.18152
– volume: 72
  start-page: 100759
  year: 2019
  ident: B36
  article-title: Deep learning in ophthalmology: the technical and clinical considerations
  publication-title: Progr. Retinal Eye Res.
  doi: 10.1016/j.preteyeres.2019.04.003
– volume: 9
  start-page: 35
  year: 2020
  ident: B16
  article-title: Transfer learning for automated OCTA detection of diabetic retinopathy
  publication-title: Transl. Vis. Sci. Technol.
  doi: 10.1167/tvst.9.2.35
– volume: 36
  start-page: 4633
  year: 2020
  ident: B42
  article-title: An overview of artificial intelligence applications for power electronics
  publication-title: IEEE Trans. Power Electr.
  doi: 10.36227/techrxiv.12431081.v2
– start-page: 4061313
  year: 2019
  ident: B4
  article-title: Glaucoma diagnosis with machine learning based on optical coherence tomography and color fundus images
  publication-title: J. Healthc. Eng
  doi: 10.1155/2019/4061313
– volume: 24
  start-page: 539
  year: 2018
  ident: B35
  article-title: AI for medical imaging goes deep
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0029-3
– volume: 2016
  start-page: 6215745
  year: 2016
  ident: B26
  article-title: Eclectic ocular comorbidities and systemic diseases with eye involvement: a review
  publication-title: BioMed Res. Int.
  doi: 10.1155/2016/951935010.1155/2016/6215745
– volume: 135
  start-page: 1170
  year: 2017
  ident: B8
  article-title: Automated grading of age-related macular degeneration from color fundus images using deep convolutional neural networks
  publication-title: J. Am. Med. Assoc. Ophthalmol.
  doi: 10.1001/jamaophthalmol.2017.3782
– volume: 38
  start-page: 1858
  year: 2019
  ident: B6
  article-title: Retouch-the retinal OCT fluid detection and seg-mentation benchmark and challenge
  publication-title: IEEE Trans. Med. Imag
  doi: 10.1109/TMI.2019.2901398
– volume: 87
  start-page: 101818
  year: 2021
  ident: B27
  article-title: Artificial intelligence (AI) impacting diagnosis of glaucoma and understanding the regulatory aspects of AI-based software as medical device
  publication-title: Computer. Med. Imag. Graph.
  doi: 10.1016/j.compmedimag.2020.101818
– volume: 7
  start-page: 1
  year: 2020
  ident: B37
  article-title: Application of machine learning in ophthalmic imaging modalities
  publication-title: Eye Vis.
  doi: 10.1186/s40662-020-00183-6
– volume: 8
  start-page: 32
  year: 2020
  ident: B31
  article-title: Automated detection of mild and multi-class diabetic eye diseases using deep learning
  publication-title: Health Inf. Sci. Syst
  doi: 10.1007/s13755-020-00125-5
– start-page: 599
  year: 2023
  ident: B39
  article-title: Mixture 2D convolutions for 3D medical image segmentation
  publication-title: Int. J. Neural Syst
  doi: 10.1142/S0129065722500599
– volume: 25
  start-page: 3029
  year: 2021
  ident: B38
  article-title: Boundary aware U-Net for retinal layers segmentation in optical coherence tomography images
  publication-title: IEEE J. Biomed. Health Informat.
  doi: 10.1109/JBHI.2021.3066208
– start-page: 16
  volume-title: 2021 1st Babylon International Conference on Information Technology and Science (BICITS)
  year: 2021
  ident: B14
  article-title: “Machine learning-based diabetic retinopathy early detection and classification systems-a survey,”
  doi: 10.1109/BICITS51482.2021.9509920
– start-page: 493
  volume-title: 2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)
  year: 2017
  ident: B9
  article-title: “Transfer learning for diabetic macular edema (DME) detection on optical coherence tomography (OCT) images,”
  doi: 10.1109/ICSIPA.2017.8120662
– volume: 20
  start-page: 28
  year: 2018
  ident: B10
  article-title: Change taxonomy: a fine-grained classification of software change
  publication-title: IT Professional
  doi: 10.1109/MITP.2018.043141666
– volume: 58
  start-page: 101093
  year: 2020
  ident: B29
  article-title: A biological image classification method based on improved CNN
  publication-title: Ecol. Informat.
  doi: 10.1016/j.ecoinf.2020.101093
– volume: 7
  start-page: 1
  year: 2021
  ident: B33
  article-title: DL-CNN-based approach with image processing techniques for diagnosis of retinal diseases
  publication-title: Multimedia Syst.
  doi: 10.1007/s00530-021-00769-7
– year: 2021
  ident: B1
  publication-title: State of the Art in Neural Networks and their Applications
  doi: 10.1016/B978-0-12-819740-0.00002-4
– start-page: 662
  volume-title: 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC)
  year: 2020
  ident: B41
  article-title: “A novel deep learning method for nuclear cataract classification based on anterior segment optical coherence tomography images,”
  doi: 10.1109/SMC42975.2020.9283218
– start-page: 22
  year: 2023
  ident: B12
  article-title: Modelling predictability of airbnb rental prices in post COVID-19 regime: an integrated framework of transfer learning, PSO-based ensemble machine learning and explainable AI
  publication-title: Int. J. Inform. Technol. Decision Mak.
  doi: 10.1142/S0219622022500602
– volume: 153
  start-page: 115
  year: 2018
  ident: B24
  article-title: An ensemble deep learning based approach for red lesion detection in fundus images
  publication-title: Comput. Methods Programs Biomed
  doi: 10.1016/j.cmpb.2017.10.017
– start-page: 39
  volume-title: Proceedings of the 10th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE-2015)
  year: 2015
  ident: B20
  article-title: “Intelligent broker: a knowledge based approach for semantic web services discovery,”
– start-page: 489
  volume-title: 2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)
  year: 2017
  ident: B5
  article-title: “Classification of SD-OCT images using a deep learning approach,”
  doi: 10.1109/ICSIPA.2017.8120661
– start-page: 532
  year: 2015
  ident: B11
  article-title: “Improved automatic localization of optic disc in Retinal Fundus using image enhancement techniques and SVM,”
  publication-title: Proceedings of the IEEE International Conference on Control Systems, Computing and Engineering
– volume: 10
  start-page: 253
  year: 2021
  ident: B30
  article-title: Deep learning-based optical coherence tomography and optical coherence tomography angiography image analysis: an updated summary
  publication-title: Asia-Pacific J. Ophthalmol.
  doi: 10.1097/APO.0000000000000405
– volume: 2021
  start-page: 3811
  year: 2021
  ident: B2
  article-title: The relationship between dry eye disease and digital screen use
  publication-title: Clin. Ophthalmol.
  doi: 10.2147/OPTH.S321591
– volume: 79
  start-page: 104176
  year: 2023
  ident: B15
  article-title: Convolution neural networks for optical coherence tomography (OCT) image classification
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2022.104176
– volume: 14
  start-page: 838
  year: 2023
  ident: B18
  article-title: Deep image: an efficient image-based deep conventional neural network method for android malware detection
  publication-title: J. Adv. Inform. Technol.
  doi: 10.12720/jait.14.4.838-845
– start-page: 2148
  volume-title: TENCON 2019 - 2019 IEEE Region 10 Conference (TENCON)
  year: 2019
  ident: B28
  article-title: “Multiple eye disease detection using Deep Neural Network,”
  doi: 10.1109/TENCON.2019.8929666
– volume: 23
  start-page: 74
  year: 2022
  ident: B32
  article-title: Artificial intelligence in dry eye disease
  publication-title: Ocular Surf.
  doi: 10.1016/j.jtos.2021.11.004
SSID ssj0002511587
Score 2.3936372
Snippet Deep learning shows promising results in extracting useful information from medical images. The proposed work applies a Convolutional Neural Network (CNN) on...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
SubjectTerms artificial intelligence
CNN
convolution layer
deep learning
eye diseases
OCT images
Title Deep learning-based classification of eye diseases using Convolutional Neural Network for OCT images
URI https://doaj.org/article/a54fc9e566234829bd5b19aa3901da04
Volume 5
WOSCitedRecordID wos001153677600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2624-9898
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002511587
  issn: 2624-9898
  databaseCode: DOA
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2624-9898
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002511587
  issn: 2624-9898
  databaseCode: M~E
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQYmDhjSgveWBDpnk7HqGAGKAwFNQt8uOMKkFb0YLEwm_nLnGrssDCkkiWk1hfzvZ3ypfvGDuRSe4sxgamJXkhMpCZ0C6RAqxWsXGlj2q1-9Ot7HbLfl89LJT6Ik1YYw_cANfWeeatAmQdCfmwKONyEyutKVd3unECjaRaSKZoDSbinJey-UsGszDV9iTRPqNi4We4p1MR6x870YJhf72zXG-wtUAJ-XkzlE22BMMttj4rt8DD7Ntm7hJgzEOZh2dB-4_jltgvyX1qhPnIc_gEHj67TDjJ2p95ZzT8CCGGDyI_jvpUC8A5slZ-3-nxwSsuLZMd9nh91evciFAkQdg0l1NhShMl3oFFdCMltTGxTXDS2VjnPtU2LZAU-MhA5stMydR4S1mOsUYqwMZ0ly0PR0PYYzyFEqAovAGHPMUh99NxZAuXIE0BkGmLxTPAKhscxKmQxUuFmQSBXNUgVwRyFUBusdP5NePGP-PX3hf0HuY9yfu6bsCIqEJEVH9FxP5_3OSAreLASKAj4vKQLU_f3uGIrdiP6WDydlwHGx7vvq6-Aewi298
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning-based+classification+of+eye+diseases+using+Convolutional+Neural+Network+for+OCT+images&rft.jtitle=Frontiers+in+computer+science+%28Lausanne%29&rft.au=Elkholy%2C+Mohamed&rft.au=Marzouk%2C+Marwa+A.&rft.date=2024-01-18&rft.issn=2624-9898&rft.eissn=2624-9898&rft.volume=5&rft_id=info:doi/10.3389%2Ffcomp.2023.1252295&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fcomp_2023_1252295
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2624-9898&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2624-9898&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2624-9898&client=summon