Deep learning-based classification of eye diseases using Convolutional Neural Network for OCT images
Deep learning shows promising results in extracting useful information from medical images. The proposed work applies a Convolutional Neural Network (CNN) on retinal images to extract features that allow early detection of ophthalmic diseases. Early disease diagnosis is critical to retinal treatment...
Saved in:
| Published in: | Frontiers in computer science (Lausanne) Vol. 5 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Frontiers Media S.A
18.01.2024
|
| Subjects: | |
| ISSN: | 2624-9898, 2624-9898 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Deep learning shows promising results in extracting useful information from medical images. The proposed work applies a Convolutional Neural Network (CNN) on retinal images to extract features that allow early detection of ophthalmic diseases. Early disease diagnosis is critical to retinal treatment. Any damage that occurs to retinal tissues that cannot be recovered can result in permanent degradation or even complete loss of sight. The proposed deep-learning algorithm detects three different diseases from features extracted from Optical Coherence Tomography (OCT) images. The deep-learning algorithm uses CNN to classify OCT images into four categories. The four categories are Normal retina, Diabetic Macular Edema (DME), Choroidal Neovascular Membranes (CNM), and Age-related Macular Degeneration (AMD). The proposed work uses publicly available OCT retinal images as a dataset. The experimental results show significant enhancement in classification accuracy while detecting the features of the three listed diseases. |
|---|---|
| AbstractList | Deep learning shows promising results in extracting useful information from medical images. The proposed work applies a Convolutional Neural Network (CNN) on retinal images to extract features that allow early detection of ophthalmic diseases. Early disease diagnosis is critical to retinal treatment. Any damage that occurs to retinal tissues that cannot be recovered can result in permanent degradation or even complete loss of sight. The proposed deep-learning algorithm detects three different diseases from features extracted from Optical Coherence Tomography (OCT) images. The deep-learning algorithm uses CNN to classify OCT images into four categories. The four categories are Normal retina, Diabetic Macular Edema (DME), Choroidal Neovascular Membranes (CNM), and Age-related Macular Degeneration (AMD). The proposed work uses publicly available OCT retinal images as a dataset. The experimental results show significant enhancement in classification accuracy while detecting the features of the three listed diseases. |
| Author | Elkholy, Mohamed Marzouk, Marwa A. |
| Author_xml | – sequence: 1 givenname: Mohamed surname: Elkholy fullname: Elkholy, Mohamed – sequence: 2 givenname: Marwa A. surname: Marzouk fullname: Marzouk, Marwa A. |
| BookMark | eNp9kMtOwzAQRS0EEq_-ACv_QIofcRIvUXlKCDZlbY2dceWSxpWdgvh70gASYsHqjmbm3hmdU3LYxx4JueBsLmWjL72Lm-1cMCHnXCghtDogJ6ISZaEb3Rz-qo_JLOc1Y0wozlVTn5D2GnFLO4TUh35VWMjYUtdBzsEHB0OIPY2e4gfSNmQcx5nu8rhKF7F_i91uvwEdfcJdmmR4j-mV-pjo82JJwwZWmM_JkYcu4-xbz8jL7c1ycV88Pt89LK4eCydVPRS2sUz4Fh06YLoGa7kTtZaOg_ISnKxYrTyzWPqm1LW03rFSa-tsrXFsyjPy8JXbRlibbRqvpw8TIZipEdPKQBqC69CAKr3TqKpKyLIR2rbKcg0gNeMtsHLMar6yXIo5J_TGhWHiMSQIneHM7OGbCb7Zwzff8Eer-GP9eeUf0yf6g41B |
| CitedBy_id | crossref_primary_10_38124_ijisrt_25aug280 crossref_primary_10_1038_s41598_024_82839_0 crossref_primary_10_5753_jbcs_2025_5177 crossref_primary_10_1016_j_compbiomed_2025_111021 crossref_primary_10_1007_s41666_024_00182_5 crossref_primary_10_1007_s10278_025_01676_3 crossref_primary_10_3390_diagnostics15070916 crossref_primary_10_3390_sym17050768 |
| Cites_doi | 10.1007/978-3-030-44289-7_59 10.18201/ijisae.2021.236 10.1097/00055735-199006000-00008 10.1097/01.icu.0000192520.48411.fa 10.14569/IJACSA.2021.0120431 10.1142/S0219622022500249 10.1016/j.cmpb.2018.02.001 10.1186/1471-2415-11-32 10.1109/MITP.2018.2889268 10.11591/ijeecs.v26.i1.pp394-403 10.1136/amiajnl-2011-000456 10.1001/jama.2017.18152 10.1016/j.preteyeres.2019.04.003 10.1167/tvst.9.2.35 10.36227/techrxiv.12431081.v2 10.1155/2019/4061313 10.1038/s41591-018-0029-3 10.1155/2016/951935010.1155/2016/6215745 10.1001/jamaophthalmol.2017.3782 10.1109/TMI.2019.2901398 10.1016/j.compmedimag.2020.101818 10.1186/s40662-020-00183-6 10.1007/s13755-020-00125-5 10.1142/S0129065722500599 10.1109/JBHI.2021.3066208 10.1109/BICITS51482.2021.9509920 10.1109/ICSIPA.2017.8120662 10.1109/MITP.2018.043141666 10.1016/j.ecoinf.2020.101093 10.1007/s00530-021-00769-7 10.1016/B978-0-12-819740-0.00002-4 10.1109/SMC42975.2020.9283218 10.1142/S0219622022500602 10.1016/j.cmpb.2017.10.017 10.1109/ICSIPA.2017.8120661 10.1097/APO.0000000000000405 10.2147/OPTH.S321591 10.1016/j.bspc.2022.104176 10.12720/jait.14.4.838-845 10.1109/TENCON.2019.8929666 10.1016/j.jtos.2021.11.004 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.3389/fcomp.2023.1252295 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2624-9898 |
| ExternalDocumentID | oai_doaj_org_article_a54fc9e566234829bd5b19aa3901da04 10_3389_fcomp_2023_1252295 |
| GroupedDBID | 9T4 AAFWJ AAYXX ADMLS AFPKN ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ M~E OK1 |
| ID | FETCH-LOGICAL-c357t-b8b02fdececa097abb1c2793c1a5f3ac36075f0be4f84973bfc0499bcb79ee4f3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001153677600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2624-9898 |
| IngestDate | Fri Oct 03 12:42:31 EDT 2025 Tue Nov 18 22:01:51 EST 2025 Sat Nov 29 02:12:00 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c357t-b8b02fdececa097abb1c2793c1a5f3ac36075f0be4f84973bfc0499bcb79ee4f3 |
| OpenAccessLink | https://doaj.org/article/a54fc9e566234829bd5b19aa3901da04 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_a54fc9e566234829bd5b19aa3901da04 crossref_citationtrail_10_3389_fcomp_2023_1252295 crossref_primary_10_3389_fcomp_2023_1252295 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-01-18 |
| PublicationDateYYYYMMDD | 2024-01-18 |
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-18 day: 18 |
| PublicationDecade | 2020 |
| PublicationTitle | Frontiers in computer science (Lausanne) |
| PublicationYear | 2024 |
| Publisher | Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Media S.A |
| References | Wang (B38) 2021; 25 Akil (B1) 2021 Hasan (B14) 2021 Qin (B29) 2020; 58 Boldt (B7) 1990; 1 Al-Mohtaseb (B2) 2021; 2021 Tayal (B33) 2021; 7 Zobair (B43) 2022; 21 Ran (B30) 2021; 10 Ghosh (B12) 2023 Elkholy (B10) 2018; 20 Le (B16) 2020; 9 Mohamed (B23) 2021; 12 Ginsburg (B13) 2006; 17 Prasad (B28) 2019 Ting (B36) 2019; 72 Mohamed (B22) 2022; 26 Waudby (B40) 2011; 11 Farooq (B11) 2015 Ting (B35) 2018; 24 Prabhakar (B27) 2021; 87 Bogunovi (B6) 2019; 38 Zhao (B42) 2020; 36 Awais (B5) 2017 Burlina (B8) 2017; 135 Peissig (B25) 2012; 19 An (B4) 2019 Madbouly (B17) 2020 Sarki (B31) 2020; 8 Ting (B34) 2017; 318 Moccia (B19) 2018; 158 Storås (B32) 2022; 23 Alqudah (B3) 2021; 9 Chan (B9) 2017 Karthik (B15) 2023; 79 Pinazo-Durán (B26) 2016; 2016 Orlando (B24) 2018; 153 Zhang (B41) 2020 Tong (B37) 2020; 7 Wang (B39) 2023 Mohamed (B21) 2019; 21 Marzuok (B18) 2023; 14 Mohamed (B20) 2015 |
| References_xml | – volume-title: Proceedings of the International Conference on Artificial Intelligence and Computer Vision, AICV 2020, Advances in Intelligent Systems and Computing, vol. 1,153 year: 2020 ident: B17 article-title: “Predicting stock market trends for Japanese candlestick using cloud model,” doi: 10.1007/978-3-030-44289-7_59 – volume: 9 start-page: 91 year: 2021 ident: B3 article-title: Artificial intelligence hybrid system for enhancing retinal diseases classification using automated deep features extracted from OCT images publication-title: Int. J. Intell. Syst. Appl. Eng. doi: 10.18201/ijisae.2021.236 – volume: 1 start-page: 247 year: 1990 ident: B7 article-title: Age-related macular degeneration publication-title: Curr. Opin. Ophthalmol. doi: 10.1097/00055735-199006000-00008 – volume: 17 start-page: 19 year: 2006 ident: B13 article-title: Contrast sensitivity, determining the visual quality and function of cataract, intraocular lenses and refractive surgery publication-title: Curr. Opin. Ophthalmol doi: 10.1097/01.icu.0000192520.48411.fa – volume: 12 start-page: 2021 year: 2021 ident: B23 article-title: Efficient security model for RDF files used in IoT applications publication-title: Int. J. Adv. Comput. Sci. Appl. doi: 10.14569/IJACSA.2021.0120431 – volume: 21 start-page: 1555 year: 2022 ident: B43 article-title: Combining Deep Neural Network and PLS-SEM to predict patients' continuity with telemedicine publication-title: Int. J. Informat. Technol. Decision Mak. doi: 10.1142/S0219622022500249 – volume: 158 start-page: 71 year: 2018 ident: B19 article-title: Blood vessel segmentation algorithms-review of methods, datasets and evaluation metrics publication-title: Comput. Methods Progr. Biomed doi: 10.1016/j.cmpb.2018.02.001 – volume: 11 start-page: 32 year: 2011 ident: B40 article-title: Cataract research using electronic health records publication-title: BMC Ophthalmol doi: 10.1186/1471-2415-11-32 – volume: 21 start-page: 57 year: 2019 ident: B21 article-title: Framework for interaction between databases and microservice architecture publication-title: IT Professional doi: 10.1109/MITP.2018.2889268 – volume: 26 start-page: 394 year: 2022 ident: B22 article-title: Light weight serverless computing at fog nodes for internet of things systems publication-title: Indonesian J. Electr. Eng. Comput. Sci. doi: 10.11591/ijeecs.v26.i1.pp394-403 – volume: 19 start-page: 225 year: 2012 ident: B25 article-title: Importance of multi-modal approaches to eeffectively identify cataract cases from electronic health records publication-title: J. Am. Med. Inf. Assoc doi: 10.1136/amiajnl-2011-000456 – volume: 318 start-page: 2211 year: 2017 ident: B34 article-title: Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes publication-title: J. Am. Med. Assoc. doi: 10.1001/jama.2017.18152 – volume: 72 start-page: 100759 year: 2019 ident: B36 article-title: Deep learning in ophthalmology: the technical and clinical considerations publication-title: Progr. Retinal Eye Res. doi: 10.1016/j.preteyeres.2019.04.003 – volume: 9 start-page: 35 year: 2020 ident: B16 article-title: Transfer learning for automated OCTA detection of diabetic retinopathy publication-title: Transl. Vis. Sci. Technol. doi: 10.1167/tvst.9.2.35 – volume: 36 start-page: 4633 year: 2020 ident: B42 article-title: An overview of artificial intelligence applications for power electronics publication-title: IEEE Trans. Power Electr. doi: 10.36227/techrxiv.12431081.v2 – start-page: 4061313 year: 2019 ident: B4 article-title: Glaucoma diagnosis with machine learning based on optical coherence tomography and color fundus images publication-title: J. Healthc. Eng doi: 10.1155/2019/4061313 – volume: 24 start-page: 539 year: 2018 ident: B35 article-title: AI for medical imaging goes deep publication-title: Nat. Med. doi: 10.1038/s41591-018-0029-3 – volume: 2016 start-page: 6215745 year: 2016 ident: B26 article-title: Eclectic ocular comorbidities and systemic diseases with eye involvement: a review publication-title: BioMed Res. Int. doi: 10.1155/2016/951935010.1155/2016/6215745 – volume: 135 start-page: 1170 year: 2017 ident: B8 article-title: Automated grading of age-related macular degeneration from color fundus images using deep convolutional neural networks publication-title: J. Am. Med. Assoc. Ophthalmol. doi: 10.1001/jamaophthalmol.2017.3782 – volume: 38 start-page: 1858 year: 2019 ident: B6 article-title: Retouch-the retinal OCT fluid detection and seg-mentation benchmark and challenge publication-title: IEEE Trans. Med. Imag doi: 10.1109/TMI.2019.2901398 – volume: 87 start-page: 101818 year: 2021 ident: B27 article-title: Artificial intelligence (AI) impacting diagnosis of glaucoma and understanding the regulatory aspects of AI-based software as medical device publication-title: Computer. Med. Imag. Graph. doi: 10.1016/j.compmedimag.2020.101818 – volume: 7 start-page: 1 year: 2020 ident: B37 article-title: Application of machine learning in ophthalmic imaging modalities publication-title: Eye Vis. doi: 10.1186/s40662-020-00183-6 – volume: 8 start-page: 32 year: 2020 ident: B31 article-title: Automated detection of mild and multi-class diabetic eye diseases using deep learning publication-title: Health Inf. Sci. Syst doi: 10.1007/s13755-020-00125-5 – start-page: 599 year: 2023 ident: B39 article-title: Mixture 2D convolutions for 3D medical image segmentation publication-title: Int. J. Neural Syst doi: 10.1142/S0129065722500599 – volume: 25 start-page: 3029 year: 2021 ident: B38 article-title: Boundary aware U-Net for retinal layers segmentation in optical coherence tomography images publication-title: IEEE J. Biomed. Health Informat. doi: 10.1109/JBHI.2021.3066208 – start-page: 16 volume-title: 2021 1st Babylon International Conference on Information Technology and Science (BICITS) year: 2021 ident: B14 article-title: “Machine learning-based diabetic retinopathy early detection and classification systems-a survey,” doi: 10.1109/BICITS51482.2021.9509920 – start-page: 493 volume-title: 2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA) year: 2017 ident: B9 article-title: “Transfer learning for diabetic macular edema (DME) detection on optical coherence tomography (OCT) images,” doi: 10.1109/ICSIPA.2017.8120662 – volume: 20 start-page: 28 year: 2018 ident: B10 article-title: Change taxonomy: a fine-grained classification of software change publication-title: IT Professional doi: 10.1109/MITP.2018.043141666 – volume: 58 start-page: 101093 year: 2020 ident: B29 article-title: A biological image classification method based on improved CNN publication-title: Ecol. Informat. doi: 10.1016/j.ecoinf.2020.101093 – volume: 7 start-page: 1 year: 2021 ident: B33 article-title: DL-CNN-based approach with image processing techniques for diagnosis of retinal diseases publication-title: Multimedia Syst. doi: 10.1007/s00530-021-00769-7 – year: 2021 ident: B1 publication-title: State of the Art in Neural Networks and their Applications doi: 10.1016/B978-0-12-819740-0.00002-4 – start-page: 662 volume-title: 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC) year: 2020 ident: B41 article-title: “A novel deep learning method for nuclear cataract classification based on anterior segment optical coherence tomography images,” doi: 10.1109/SMC42975.2020.9283218 – start-page: 22 year: 2023 ident: B12 article-title: Modelling predictability of airbnb rental prices in post COVID-19 regime: an integrated framework of transfer learning, PSO-based ensemble machine learning and explainable AI publication-title: Int. J. Inform. Technol. Decision Mak. doi: 10.1142/S0219622022500602 – volume: 153 start-page: 115 year: 2018 ident: B24 article-title: An ensemble deep learning based approach for red lesion detection in fundus images publication-title: Comput. Methods Programs Biomed doi: 10.1016/j.cmpb.2017.10.017 – start-page: 39 volume-title: Proceedings of the 10th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE-2015) year: 2015 ident: B20 article-title: “Intelligent broker: a knowledge based approach for semantic web services discovery,” – start-page: 489 volume-title: 2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA) year: 2017 ident: B5 article-title: “Classification of SD-OCT images using a deep learning approach,” doi: 10.1109/ICSIPA.2017.8120661 – start-page: 532 year: 2015 ident: B11 article-title: “Improved automatic localization of optic disc in Retinal Fundus using image enhancement techniques and SVM,” publication-title: Proceedings of the IEEE International Conference on Control Systems, Computing and Engineering – volume: 10 start-page: 253 year: 2021 ident: B30 article-title: Deep learning-based optical coherence tomography and optical coherence tomography angiography image analysis: an updated summary publication-title: Asia-Pacific J. Ophthalmol. doi: 10.1097/APO.0000000000000405 – volume: 2021 start-page: 3811 year: 2021 ident: B2 article-title: The relationship between dry eye disease and digital screen use publication-title: Clin. Ophthalmol. doi: 10.2147/OPTH.S321591 – volume: 79 start-page: 104176 year: 2023 ident: B15 article-title: Convolution neural networks for optical coherence tomography (OCT) image classification publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2022.104176 – volume: 14 start-page: 838 year: 2023 ident: B18 article-title: Deep image: an efficient image-based deep conventional neural network method for android malware detection publication-title: J. Adv. Inform. Technol. doi: 10.12720/jait.14.4.838-845 – start-page: 2148 volume-title: TENCON 2019 - 2019 IEEE Region 10 Conference (TENCON) year: 2019 ident: B28 article-title: “Multiple eye disease detection using Deep Neural Network,” doi: 10.1109/TENCON.2019.8929666 – volume: 23 start-page: 74 year: 2022 ident: B32 article-title: Artificial intelligence in dry eye disease publication-title: Ocular Surf. doi: 10.1016/j.jtos.2021.11.004 |
| SSID | ssj0002511587 |
| Score | 2.3936372 |
| Snippet | Deep learning shows promising results in extracting useful information from medical images. The proposed work applies a Convolutional Neural Network (CNN) on... |
| SourceID | doaj crossref |
| SourceType | Open Website Enrichment Source Index Database |
| SubjectTerms | artificial intelligence CNN convolution layer deep learning eye diseases OCT images |
| Title | Deep learning-based classification of eye diseases using Convolutional Neural Network for OCT images |
| URI | https://doaj.org/article/a54fc9e566234829bd5b19aa3901da04 |
| Volume | 5 |
| WOSCitedRecordID | wos001153677600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2624-9898 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002511587 issn: 2624-9898 databaseCode: DOA dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2624-9898 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002511587 issn: 2624-9898 databaseCode: M~E dateStart: 20190101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQYmDhjSgveWBDpnk7HqGAGKAwFNQt8uOMKkFb0YLEwm_nLnGrssDCkkiWk1hfzvZ3ypfvGDuRSe4sxgamJXkhMpCZ0C6RAqxWsXGlj2q1-9Ot7HbLfl89LJT6Ik1YYw_cANfWeeatAmQdCfmwKONyEyutKVd3unECjaRaSKZoDSbinJey-UsGszDV9iTRPqNi4We4p1MR6x870YJhf72zXG-wtUAJ-XkzlE22BMMttj4rt8DD7Ntm7hJgzEOZh2dB-4_jltgvyX1qhPnIc_gEHj67TDjJ2p95ZzT8CCGGDyI_jvpUC8A5slZ-3-nxwSsuLZMd9nh91evciFAkQdg0l1NhShMl3oFFdCMltTGxTXDS2VjnPtU2LZAU-MhA5stMydR4S1mOsUYqwMZ0ly0PR0PYYzyFEqAovAGHPMUh99NxZAuXIE0BkGmLxTPAKhscxKmQxUuFmQSBXNUgVwRyFUBusdP5NePGP-PX3hf0HuY9yfu6bsCIqEJEVH9FxP5_3OSAreLASKAj4vKQLU_f3uGIrdiP6WDydlwHGx7vvq6-Aewi298 |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning-based+classification+of+eye+diseases+using+Convolutional+Neural+Network+for+OCT+images&rft.jtitle=Frontiers+in+computer+science+%28Lausanne%29&rft.au=Elkholy%2C+Mohamed&rft.au=Marzouk%2C+Marwa+A.&rft.date=2024-01-18&rft.issn=2624-9898&rft.eissn=2624-9898&rft.volume=5&rft_id=info:doi/10.3389%2Ffcomp.2023.1252295&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fcomp_2023_1252295 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2624-9898&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2624-9898&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2624-9898&client=summon |