Wing Design Optimization for a Long-Endurance UAV using FSI Analysis and the Kriging Method
In this study, wing design optimization for long-endurance unmanned aerial vehicles (UAVs) is investigated. The fluidstructure integration (FSI) analysis is carried out to simulate the aeroelastic characteristics of a high-aspect ratio wing for a long-endurance UAV. High-fidelity computational codes...
Gespeichert in:
| Veröffentlicht in: | International journal of aeronautical and space sciences Jg. 17; H. 3; S. 423 - 431 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
한국항공우주학회
01.09.2016
|
| Schlagworte: | |
| ISSN: | 2093-274X, 2093-2480 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | In this study, wing design optimization for long-endurance unmanned aerial vehicles (UAVs) is investigated. The fluidstructure integration (FSI) analysis is carried out to simulate the aeroelastic characteristics of a high-aspect ratio wing for a long-endurance UAV. High-fidelity computational codes, FLUENT and DIAMOND/IPSAP, are employed for the loose coupling FSI optimization. In addition, this optimization procedure is improved by adopting the design of experiment (DOE) and Kriging model. A design optimization tool, PIAnO, integrates with an in-house codes, CAE simulation and an optimization process for generating the wing geometry/computational mesh, transferring information, and finding the optimum solution.
The goal of this optimization is to find the best high-aspect ratio wing shape that generates minimum drag at a cruise condition of CL = 1.0. The result shows that the optimal wing shape produced 5.95 % less drag compared to the initial wing shape. KCI Citation Count: 3 |
|---|---|
| Bibliographie: | G704-SER000009560.2016.17.3.012 |
| ISSN: | 2093-274X 2093-2480 |
| DOI: | 10.5139/IJASS.2016.17.3.423 |