Wing Design Optimization for a Long-Endurance UAV using FSI Analysis and the Kriging Method
In this study, wing design optimization for long-endurance unmanned aerial vehicles (UAVs) is investigated. The fluidstructure integration (FSI) analysis is carried out to simulate the aeroelastic characteristics of a high-aspect ratio wing for a long-endurance UAV. High-fidelity computational codes...
Uložené v:
| Vydané v: | International journal of aeronautical and space sciences Ročník 17; číslo 3; s. 423 - 431 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
한국항공우주학회
01.09.2016
|
| Predmet: | |
| ISSN: | 2093-274X, 2093-2480 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In this study, wing design optimization for long-endurance unmanned aerial vehicles (UAVs) is investigated. The fluidstructure integration (FSI) analysis is carried out to simulate the aeroelastic characteristics of a high-aspect ratio wing for a long-endurance UAV. High-fidelity computational codes, FLUENT and DIAMOND/IPSAP, are employed for the loose coupling FSI optimization. In addition, this optimization procedure is improved by adopting the design of experiment (DOE) and Kriging model. A design optimization tool, PIAnO, integrates with an in-house codes, CAE simulation and an optimization process for generating the wing geometry/computational mesh, transferring information, and finding the optimum solution.
The goal of this optimization is to find the best high-aspect ratio wing shape that generates minimum drag at a cruise condition of CL = 1.0. The result shows that the optimal wing shape produced 5.95 % less drag compared to the initial wing shape. KCI Citation Count: 3 |
|---|---|
| Bibliografia: | G704-SER000009560.2016.17.3.012 |
| ISSN: | 2093-274X 2093-2480 |
| DOI: | 10.5139/IJASS.2016.17.3.423 |