Wing Design Optimization for a Long-Endurance UAV using FSI Analysis and the Kriging Method

In this study, wing design optimization for long-endurance unmanned aerial vehicles (UAVs) is investigated. The fluidstructure integration (FSI) analysis is carried out to simulate the aeroelastic characteristics of a high-aspect ratio wing for a long-endurance UAV. High-fidelity computational codes...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal of aeronautical and space sciences Ročník 17; číslo 3; s. 423 - 431
Hlavní autori: Son, Seok-Ho, Choi, Byung-Lyul, Jin, Won-Jin, Lee, Yung-Gyo, Kim, Cheol-Wan, Choi, Dong-Hoon
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: 한국항공우주학회 01.09.2016
Predmet:
ISSN:2093-274X, 2093-2480
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this study, wing design optimization for long-endurance unmanned aerial vehicles (UAVs) is investigated. The fluidstructure integration (FSI) analysis is carried out to simulate the aeroelastic characteristics of a high-aspect ratio wing for a long-endurance UAV. High-fidelity computational codes, FLUENT and DIAMOND/IPSAP, are employed for the loose coupling FSI optimization. In addition, this optimization procedure is improved by adopting the design of experiment (DOE) and Kriging model. A design optimization tool, PIAnO, integrates with an in-house codes, CAE simulation and an optimization process for generating the wing geometry/computational mesh, transferring information, and finding the optimum solution. The goal of this optimization is to find the best high-aspect ratio wing shape that generates minimum drag at a cruise condition of CL = 1.0. The result shows that the optimal wing shape produced 5.95 % less drag compared to the initial wing shape. KCI Citation Count: 3
Bibliografia:G704-SER000009560.2016.17.3.012
ISSN:2093-274X
2093-2480
DOI:10.5139/IJASS.2016.17.3.423