Fuzzy Clustering and Aggregation of Relational Data With Instance-Level Constraints

In this paper, we introduce a semisupervised approach for clustering and aggregating relational data (SS-CARD). We assume that data is available in a relational form, where information only about the degrees to which pairs of objects in the dataset are related is available. Moreover, we assume that...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on fuzzy systems Ročník 16; číslo 6; s. 1565 - 1581
Hlavní autori: Frigui, H., Cheul Hwang
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.12.2008
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1063-6706, 1941-0034
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this paper, we introduce a semisupervised approach for clustering and aggregating relational data (SS-CARD). We assume that data is available in a relational form, where information only about the degrees to which pairs of objects in the dataset are related is available. Moreover, we assume that the relational information is represented by multiple dissimilarity matrices. These matrices could have been generated using different features, different mappings, or even different sensors. SS-CARD is designed to aggregate pairwise distances from multiple relational matrices, partition the data into clusters, and learn a relevance weight for each matrix in each cluster simultaneously. These weights have two main advantages. First, they help in partitioning the data into more meaningful clusters. Second, they can be used as part of a more complex learning system to enhance its learning behavior. SS-CARD uses partial supervision information that consists of a small set of constraints on which instances ( should link ) or ( should not link ) reside in the same cluster. This additional information can guide the algorithm in learning the optimal relevance weights and in generating a better partition. The performance of the proposed algorithm is illustrated by using it in two different applications. The first one consists of categorizing the discrete nominal-valued mushroom data. The second application consists of categorizing a collection of images where each image is represented by several continuous features. For both applications, we represent the pairwise image dissimilarities by multiple relational matrices extracted from different feature sets. The results are compared with those obtained by three traditional relational clustering methods. We show that the partial supervision information and the learned aggregation weights can improve the results significantly.
AbstractList In this paper, we introduce a semisupervised approach for clustering and aggregating relational data (SS-CARD). We assume that data is available in a relational form, where information only about the degrees to which pairs of objects in the dataset are related is available. Moreover, we assume that the relational information is represented by @@umultiple@ dissimilarity matrices. These matrices could have been generated using different features, different mappings, or even different sensors. SS-CARD is designed to aggregate pairwise distances from multiple relational matrices, partition the data into clusters, and learn a relevance weight for each matrix in each cluster simultaneously. These weights have two main advantages. First, they help in partitioning the data into more meaningful clusters. Second, they can be used as part of a more complex learning system to enhance its learning behavior. SS-CARD uses partial supervision information that consists of a small set of constraints on which instances (@@ushould@ @@ulink@) or ( @@ushould@ @@unot@ @@ulink@) reside in the same cluster. This additional information can guide the algorithm in learning the optimal relevance weights and in generating a better partition. The performance of the proposed algorithm is illustrated by using it in two different applications. The first one consists of categorizing the discrete nominal-valued mushroom data. The second application consists of categorizing a collection of images where each image is represented by several continuous features. For both applications, we represent the pairwise image dissimilarities by multiple relational matrices extracted from different feature sets. The results are compared with those obtained by three traditional relational clustering methods. We show that the partial supervision information and the learned aggregation weights can improve the results significantly.
In this paper, we introduce a semisupervised approach for clustering and aggregating relational data (SS-CARD). We assume that data is available in a relational form, where information only about the degrees to which pairs of objects in the dataset are related is available. Moreover, we assume that the relational information is represented by multiple dissimilarity matrices. These matrices could have been generated using different features, different mappings, or even different sensors. SS-CARD is designed to aggregate pairwise distances from multiple relational matrices, partition the data into clusters, and learn a relevance weight for each matrix in each cluster simultaneously. These weights have two main advantages. First, they help in partitioning the data into more meaningful clusters. Second, they can be used as part of a more complex learning system to enhance its learning behavior. SS-CARD uses partial supervision information that consists of a small set of constraints on which instances ( should link ) or ( should not link ) reside in the same cluster. This additional information can guide the algorithm in learning the optimal relevance weights and in generating a better partition. The performance of the proposed algorithm is illustrated by using it in two different applications. The first one consists of categorizing the discrete nominal-valued mushroom data. The second application consists of categorizing a collection of images where each image is represented by several continuous features. For both applications, we represent the pairwise image dissimilarities by multiple relational matrices extracted from different feature sets. The results are compared with those obtained by three traditional relational clustering methods. We show that the partial supervision information and the learned aggregation weights can improve the results significantly.
[...] we assume that the relational information is represented by multiple dissimilarity matrices.
Author Frigui, H.
Cheul Hwang
Author_xml – sequence: 1
  givenname: H.
  surname: Frigui
  fullname: Frigui, H.
  organization: Comput. Eng. & Comput. Sci. (CECS) Dept., Univ. of Louisville, Louisville, KY
– sequence: 2
  surname: Cheul Hwang
  fullname: Cheul Hwang
  organization: Manage. Inf. Services Dept., Jefferson County Public Sch. District, Louisville, KY
BookMark eNp9kU1r3DAQhkVJoPn6A-1F9JCenIw-LMvHsO22gYVAmxDIRYy1462DIyeSXEh-fe3d0EMOuYxG8DwDM-8h2wtDIMY-CTgTAurz6-XN3d2ZBLBzKU0tP7ADUWtRACi9N_VgVGEqMB_ZYUr3AEKXwh6w38vx5eWZL_oxZYpd2HAMa36x2UTaYO6GwIeW_6J-22PPv2FGftvlP_wypIzBU7Giv9TzxTD9I3Yhp2O232Kf6OT1PWI3y-_Xi5_F6urH5eJiVXhVVrloDIA3WEkrGqFAr9HYprXY1mQaUZlGea2AVKNQtaVAwFZ7Ba2065JQeHXEvu7mPsbhaaSU3UOXPPU9BhrG5KwFMy0pYSJP3yWVLkFVtZrAL2_A-2GM0-LJ1UIqsFLPkN1BPg4pRWqd7_L2QPMBeifAzaG4bShuDsW9hjKp8o36GLsHjM_vS593UkdE_wVtpBJlpf4BllKaNw
CODEN IEFSEV
CitedBy_id crossref_primary_10_1016_j_fss_2023_108630
crossref_primary_10_1109_TFUZZ_2011_2170175
crossref_primary_10_1016_j_ins_2017_09_062
crossref_primary_10_1016_j_jss_2017_08_017
crossref_primary_10_1016_j_patrec_2010_01_002
crossref_primary_10_1016_j_patcog_2012_05_011
crossref_primary_10_1109_TFUZZ_2021_3129848
crossref_primary_10_1007_s11704_014_3354_9
crossref_primary_10_1016_j_ymssp_2014_04_021
crossref_primary_10_1145_3676960
crossref_primary_10_1007_s40815_019_00683_1
crossref_primary_10_1007_s10462_024_11103_8
crossref_primary_10_1109_TFUZZ_2018_2889010
crossref_primary_10_1016_j_patcog_2012_06_012
crossref_primary_10_1109_TFUZZ_2011_2123899
Cites_doi 10.1016/S0167-8655(01)00045-9
10.1109/FUZZY.2005.1452508
10.1137/1.9781611972740.31
10.1109/34.713365
10.1016/S0020-0255(70)80056-1
10.1007/s00530-002-0070-3
10.1007/BF01908073
10.1142/S021821300000032X
10.1016/0165-0114(92)90227-U
10.1016/0031-3203(95)00120-4
10.1111/j.2517-6161.1977.tb01600.x
10.1016/j.patrec.2006.11.010
10.1109/FUZZY.2006.1681693
10.1109/91.669013
10.1016/0165-0114(78)90016-7
10.1016/j.patcog.2003.08.002
10.1109/91.940971
10.1109/ICCV.1998.710701
10.1109/FUZZY.2005.1452429
10.1145/1014052.1014128
10.1016/j.patcog.2007.02.019
10.1109/TKDE.2002.1033770
10.1016/0031-3203(89)90066-6
10.1109/FUZZY.2000.838651
10.1007/BF00130487
10.1016/0031-3203(94)90119-8
10.1109/21.87068
10.1016/0167-8655(85)90037-6
10.1016/S0218-4885(00)00053-8
10.1109/34.391417
10.1109/TFUZZ.2002.805899
10.1109/21.148412
10.1109/34.531803
10.1109/34.955109
10.1007/978-1-4757-0450-1
10.1002/9780470316801
10.1016/S0031-3203(96)00140-9
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
7SP
F28
FR3
DOI 10.1109/TFUZZ.2008.2005692
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Electronics & Communications Abstracts
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
Electronics & Communications Abstracts
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database

Technology Research Database
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0034
EndPage 1581
ExternalDocumentID 2545341711
10_1109_TFUZZ_2008_2005692
4623157
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
RIG
7SP
F28
FR3
ID FETCH-LOGICAL-c357t-b600c6a7281b1304da68bf8af9e6b176b3c430e3b3a3f51a0af4c30f28d5ea1c3
IEDL.DBID RIE
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000262221000015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1063-6706
IngestDate Sun Nov 09 13:59:38 EST 2025
Sun Sep 28 14:00:19 EDT 2025
Sun Jun 29 16:41:23 EDT 2025
Sat Nov 29 06:46:21 EST 2025
Tue Nov 18 22:18:26 EST 2025
Wed Aug 27 06:03:27 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-b600c6a7281b1304da68bf8af9e6b176b3c430e3b3a3f51a0af4c30f28d5ea1c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 912308243
PQPubID 23500
PageCount 17
ParticipantIDs proquest_journals_912308243
proquest_miscellaneous_34503793
proquest_miscellaneous_880651820
ieee_primary_4623157
crossref_citationtrail_10_1109_TFUZZ_2008_2005692
crossref_primary_10_1109_TFUZZ_2008_2005692
PublicationCentury 2000
PublicationDate 2008-12-01
PublicationDateYYYYMMDD 2008-12-01
PublicationDate_xml – month: 12
  year: 2008
  text: 2008-12-01
  day: 01
PublicationDecade 2000
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on fuzzy systems
PublicationTitleAbbrev TFUZZ
PublicationYear 2008
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref15
ref14
wagstaff (ref44) 2000
ref17
ref16
ref19
ref18
gustafson (ref21) 1979
ref50
ref46
ref48
ref47
wagstaff (ref45) 2001
ref42
kaufman (ref27) 1990
ref43
rubner (ref39) 1999
ref49
ref8
ref7
ref9
ref4
ref6
ref5
ref40
ref35
ref37
ref36
ref31
ref33
ref32
domeniconi (ref12) 2006
basu (ref3) 2002
ref2
ref38
dempster (ref10) 1977; 39
abu-mostafa (ref1) 1995; 272
keller (ref29) 2000
klein (ref30) 2002
sneath (ref22) 1973
ref24
ref23
ref26
ref25
ref20
ref28
manjunath (ref34) 2002
sen (ref41) 1998
diday (ref11) 1975
References_xml – ident: ref13
  doi: 10.1016/S0167-8655(01)00045-9
– ident: ref20
  doi: 10.1109/FUZZY.2005.1452508
– ident: ref4
  doi: 10.1137/1.9781611972740.31
– ident: ref2
  doi: 10.1109/34.713365
– ident: ref40
  doi: 10.1016/S0020-0255(70)80056-1
– ident: ref50
  doi: 10.1007/s00530-002-0070-3
– start-page: 307
  year: 2002
  ident: ref30
  article-title: From instance-level constraints to space-level constraints: Making the most of prior knowledge in data clustering
  publication-title: Proc Int Conf Mach Learn
– ident: ref47
  doi: 10.1007/BF01908073
– ident: ref35
  doi: 10.1142/S021821300000032X
– ident: ref19
  doi: 10.1016/0165-0114(92)90227-U
– ident: ref5
  doi: 10.1016/0031-3203(95)00120-4
– volume: 39
  start-page: 1
  year: 1977
  ident: ref10
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J Roy Stat Soc Ser ?
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– ident: ref8
  doi: 10.1016/j.patrec.2006.11.010
– start-page: 577
  year: 2001
  ident: ref45
  article-title: Constrained k-means clustering with background knowledge
  publication-title: Proc Int Conf Mach Learn
– ident: ref7
  doi: 10.1109/FUZZY.2006.1681693
– start-page: 761
  year: 1979
  ident: ref21
  article-title: Fuzzy clustering with a fuzzy covariance matrix
  publication-title: Proc IEEE CDC
– year: 1999
  ident: ref39
  publication-title: Perceptual metrics for image database navigation
– ident: ref42
  doi: 10.1109/91.669013
– start-page: 1411
  year: 1998
  ident: ref41
  article-title: Clustering of relational data containing noise and outliers
  publication-title: Proc IEEE Conf Fuzzy Syst
– ident: ref38
  doi: 10.1016/0165-0114(78)90016-7
– ident: ref17
  doi: 10.1016/j.patcog.2003.08.002
– ident: ref31
  doi: 10.1109/91.940971
– ident: ref48
  doi: 10.1109/ICCV.1998.710701
– ident: ref26
  doi: 10.1109/FUZZY.2005.1452429
– ident: ref32
  doi: 10.1145/1014052.1014128
– ident: ref14
  doi: 10.1016/j.patcog.2007.02.019
– ident: ref36
  doi: 10.1109/TKDE.2002.1033770
– ident: ref25
  doi: 10.1016/0031-3203(89)90066-6
– start-page: 1103
  year: 2000
  ident: ref44
  article-title: Clustering with instance-level constraints
  publication-title: Proc Int Conf Mach Learn
– year: 2006
  ident: ref12
  publication-title: Locally adaptive metrics for clustering high dimensional data
– ident: ref16
  doi: 10.1109/FUZZY.2000.838651
– ident: ref43
  doi: 10.1007/BF00130487
– year: 1973
  ident: ref22
  publication-title: Numerical Taxonomy
– ident: ref24
  doi: 10.1016/0031-3203(94)90119-8
– ident: ref49
  doi: 10.1109/21.87068
– ident: ref37
  doi: 10.1016/0167-8655(85)90037-6
– ident: ref28
  doi: 10.1016/S0218-4885(00)00053-8
– start-page: 19
  year: 2002
  ident: ref3
  article-title: Semi-supervised clustering by seeding
  publication-title: Proc Int Conf Mach Learn
– ident: ref23
  doi: 10.1109/34.391417
– year: 2000
  ident: ref29
  publication-title: Fuzzy Measures and Integrals
– year: 2002
  ident: ref34
  publication-title: Introduction to MPEG 7 Multimedia Content Description Language
– ident: ref9
  doi: 10.1109/TFUZZ.2002.805899
– ident: ref18
  doi: 10.1109/21.148412
– ident: ref33
  doi: 10.1109/34.531803
– start-page: 29
  year: 1975
  ident: ref11
  article-title: Classification automatique sequentielle pour grands tableaux
  publication-title: Rev Fr Autom Inf Rech Oper
– ident: ref46
  doi: 10.1109/34.955109
– ident: ref6
  doi: 10.1007/978-1-4757-0450-1
– year: 1990
  ident: ref27
  publication-title: Finding Groups in Data
  doi: 10.1002/9780470316801
– volume: 272
  start-page: 64
  year: 1995
  ident: ref1
  publication-title: Machines that learn from hints
– ident: ref15
  doi: 10.1016/S0031-3203(96)00140-9
SSID ssj0014518
Score 2.0285168
Snippet In this paper, we introduce a semisupervised approach for clustering and aggregating relational data (SS-CARD). We assume that data is available in a...
[...] we assume that the relational information is represented by multiple dissimilarity matrices.
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1565
SubjectTerms Aggregates
Algorithms
Clustering
Clustering algorithms
Clustering methods
Clusters
Constrained clustering
Data mining
feature aggregation
Feature extraction
image database categorization
Image databases
Learning
Learning systems
Mathematical analysis
Matrices
Matrix methods
Partitioning algorithms
Pattern recognition
relational clustering
semisupervised clustering
Sensor phenomena and characterization
Studies
Title Fuzzy Clustering and Aggregation of Relational Data With Instance-Level Constraints
URI https://ieeexplore.ieee.org/document/4623157
https://www.proquest.com/docview/912308243
https://www.proquest.com/docview/34503793
https://www.proquest.com/docview/880651820
Volume 16
WOSCitedRecordID wos000262221000015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1941-0034
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014518
  issn: 1063-6706
  databaseCode: RIE
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9ZAEJ4A8aAHUdBYUdyDN6203a_ukSBvMCHERFDCpdmPWSQhfQ1vayK_3t3tRzSKibemnba7ne7O7M4z8wC89lwFI2l97qRzeZj9IhugKnJEqnXlja4TqvLzsTw5qc_P1cc1eDvnwiBiAp_hu3iYYvluafu4VbbHgq0uuVyHdSnFkKs1RwwYL4e0N0FzIQsxJcgUau90cXZxMcAm4x6KUNVvRiixqvwxFSf7stj8v5Y9goejH0n2B8U_hjVst2Bz4mgg45Ddgge_FBzchk-L_vb2Bzm47mN9hHCK6NaR_cuw6L5MKiJLTyZ8XHj8e91p8uWq-0o-JDfSYn4cUUYk8nwmdolu9QTOFoenB0f5SKuQW8pll5vg41ihZRU81mDBmNOiNr7WXqEwpRSGWkYLpIZq6nmpC-2ZpYWvasdRl5Y-hY122eIzIMZQxrl0nFNkzNgaHSurIOpRUV3rDMrpOzd2rDkeG3fdpLVHoZqkm4ELc9RNBm_me74NFTf-Kb0dtTFLjorIYGdSZzMOylWjgpUOHg-jGbyar4bRFEMkusVlv2pCdwoapqwMyB0SdYxEx6r3z__-5h24nyAlCfHyAja6mx5fwj37vbta3eymf_YnKtjqPw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VggQcKLQgQoH6wA1CndhO4mNVWLViWSGxhaqXyI9xqVRlUTdBor8e23kIxEPiFiWTxM7EnrHnm_kAXjghvZE0LrWltamf_QIboKQpIlMqd1pVEVX5aV4uFtXpqfywAa-mXBhEjOAzfB0OYyzfrkwXtsr2ubfVmShvwE3BeU77bK0pZsBF1ie-FSwtSlqMKTJU7i9nJ2dnPXAy7KIUMv_FDEVeld8m42hhZlv_17b7cG_wJMlBr_oHsIHNNmyNLA1kGLTbcPenkoM78HHWXV9_J4eXXaiQ4E8R1VhycO6X3edRSWTlyIiQ849_o1pFPl-0X8hxdCQNpvOAMyKB6TPyS7Trh3Aye7s8PEoHYoXUMFG2qfZejilUmXuf1dswblVRaVcpJ7HQWVloZjijyDRTzIlMUeW4YdTllRWoMsMewWazavAxEK0ZF6K0QjDkXJsKLc9yL-pQMlWpBLLxO9dmqDoeGndZx9UHlXXUTc-GOegmgZfTPV_7mhv_lN4J2pgkB0UksDuqsx6G5bqW3k57n4ezBPamq348hSCJanDVrWvfHcr8pJUA-YtEFWLRoe79kz-_eQ9uHy3fz-v58eLdLtyJAJOIf3kKm-1Vh8_glvnWXqyvnsf_9wd8lu2G
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fuzzy+Clustering+and+Aggregation+of+Relational+Data+With+Instance-Level+Constraints&rft.jtitle=IEEE+transactions+on+fuzzy+systems&rft.au=Frigui%2C+H&rft.au=Hwang%2C+Cheul&rft.date=2008-12-01&rft.issn=1063-6706&rft.volume=16&rft.issue=6&rft.spage=1565&rft.epage=1581&rft_id=info:doi/10.1109%2FTFUZZ.2008.2005692&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6706&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6706&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6706&client=summon