Fuzzy Clustering and Aggregation of Relational Data With Instance-Level Constraints
In this paper, we introduce a semisupervised approach for clustering and aggregating relational data (SS-CARD). We assume that data is available in a relational form, where information only about the degrees to which pairs of objects in the dataset are related is available. Moreover, we assume that...
Saved in:
| Published in: | IEEE transactions on fuzzy systems Vol. 16; no. 6; pp. 1565 - 1581 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.12.2008
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 1063-6706, 1941-0034 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In this paper, we introduce a semisupervised approach for clustering and aggregating relational data (SS-CARD). We assume that data is available in a relational form, where information only about the degrees to which pairs of objects in the dataset are related is available. Moreover, we assume that the relational information is represented by multiple dissimilarity matrices. These matrices could have been generated using different features, different mappings, or even different sensors. SS-CARD is designed to aggregate pairwise distances from multiple relational matrices, partition the data into clusters, and learn a relevance weight for each matrix in each cluster simultaneously. These weights have two main advantages. First, they help in partitioning the data into more meaningful clusters. Second, they can be used as part of a more complex learning system to enhance its learning behavior. SS-CARD uses partial supervision information that consists of a small set of constraints on which instances ( should link ) or ( should not link ) reside in the same cluster. This additional information can guide the algorithm in learning the optimal relevance weights and in generating a better partition. The performance of the proposed algorithm is illustrated by using it in two different applications. The first one consists of categorizing the discrete nominal-valued mushroom data. The second application consists of categorizing a collection of images where each image is represented by several continuous features. For both applications, we represent the pairwise image dissimilarities by multiple relational matrices extracted from different feature sets. The results are compared with those obtained by three traditional relational clustering methods. We show that the partial supervision information and the learned aggregation weights can improve the results significantly. |
|---|---|
| AbstractList | In this paper, we introduce a semisupervised approach for clustering and aggregating relational data (SS-CARD). We assume that data is available in a relational form, where information only about the degrees to which pairs of objects in the dataset are related is available. Moreover, we assume that the relational information is represented by multiple dissimilarity matrices. These matrices could have been generated using different features, different mappings, or even different sensors. SS-CARD is designed to aggregate pairwise distances from multiple relational matrices, partition the data into clusters, and learn a relevance weight for each matrix in each cluster simultaneously. These weights have two main advantages. First, they help in partitioning the data into more meaningful clusters. Second, they can be used as part of a more complex learning system to enhance its learning behavior. SS-CARD uses partial supervision information that consists of a small set of constraints on which instances (should link) or ( should not link) reside in the same cluster. This additional information can guide the algorithm in learning the optimal relevance weights and in generating a better partition. The performance of the proposed algorithm is illustrated by using it in two different applications. The first one consists of categorizing the discrete nominal-valued mushroom data. The second application consists of categorizing a collection of images where each image is represented by several continuous features. For both applications, we represent the pairwise image dissimilarities by multiple relational matrices extracted from different feature sets. The results are compared with those obtained by three traditional relational clustering methods. We show that the partial supervision information and the learned aggregation weights can improve the results significantly. [...] we assume that the relational information is represented by multiple dissimilarity matrices. In this paper, we introduce a semisupervised approach for clustering and aggregating relational data (SS-CARD). We assume that data is available in a relational form, where information only about the degrees to which pairs of objects in the dataset are related is available. Moreover, we assume that the relational information is represented by @@umultiple@ dissimilarity matrices. These matrices could have been generated using different features, different mappings, or even different sensors. SS-CARD is designed to aggregate pairwise distances from multiple relational matrices, partition the data into clusters, and learn a relevance weight for each matrix in each cluster simultaneously. These weights have two main advantages. First, they help in partitioning the data into more meaningful clusters. Second, they can be used as part of a more complex learning system to enhance its learning behavior. SS-CARD uses partial supervision information that consists of a small set of constraints on which instances (@@ushould@ @@ulink@) or ( @@ushould@ @@unot@ @@ulink@) reside in the same cluster. This additional information can guide the algorithm in learning the optimal relevance weights and in generating a better partition. The performance of the proposed algorithm is illustrated by using it in two different applications. The first one consists of categorizing the discrete nominal-valued mushroom data. The second application consists of categorizing a collection of images where each image is represented by several continuous features. For both applications, we represent the pairwise image dissimilarities by multiple relational matrices extracted from different feature sets. The results are compared with those obtained by three traditional relational clustering methods. We show that the partial supervision information and the learned aggregation weights can improve the results significantly. |
| Author | Frigui, H. Cheul Hwang |
| Author_xml | – sequence: 1 givenname: H. surname: Frigui fullname: Frigui, H. organization: Comput. Eng. & Comput. Sci. (CECS) Dept., Univ. of Louisville, Louisville, KY – sequence: 2 surname: Cheul Hwang fullname: Cheul Hwang organization: Manage. Inf. Services Dept., Jefferson County Public Sch. District, Louisville, KY |
| BookMark | eNp9kU1r3DAQhkVJoPn6A-1F9JCenIw-LMvHsO22gYVAmxDIRYy1462DIyeSXEh-fe3d0EMOuYxG8DwDM-8h2wtDIMY-CTgTAurz6-XN3d2ZBLBzKU0tP7ADUWtRACi9N_VgVGEqMB_ZYUr3AEKXwh6w38vx5eWZL_oxZYpd2HAMa36x2UTaYO6GwIeW_6J-22PPv2FGftvlP_wypIzBU7Giv9TzxTD9I3Yhp2O232Kf6OT1PWI3y-_Xi5_F6urH5eJiVXhVVrloDIA3WEkrGqFAr9HYprXY1mQaUZlGea2AVKNQtaVAwFZ7Ba2065JQeHXEvu7mPsbhaaSU3UOXPPU9BhrG5KwFMy0pYSJP3yWVLkFVtZrAL2_A-2GM0-LJ1UIqsFLPkN1BPg4pRWqd7_L2QPMBeifAzaG4bShuDsW9hjKp8o36GLsHjM_vS593UkdE_wVtpBJlpf4BllKaNw |
| CODEN | IEFSEV |
| CitedBy_id | crossref_primary_10_1016_j_fss_2023_108630 crossref_primary_10_1109_TFUZZ_2011_2170175 crossref_primary_10_1016_j_ins_2017_09_062 crossref_primary_10_1016_j_jss_2017_08_017 crossref_primary_10_1016_j_patrec_2010_01_002 crossref_primary_10_1016_j_patcog_2012_05_011 crossref_primary_10_1109_TFUZZ_2021_3129848 crossref_primary_10_1007_s11704_014_3354_9 crossref_primary_10_1016_j_ymssp_2014_04_021 crossref_primary_10_1145_3676960 crossref_primary_10_1007_s40815_019_00683_1 crossref_primary_10_1007_s10462_024_11103_8 crossref_primary_10_1109_TFUZZ_2018_2889010 crossref_primary_10_1016_j_patcog_2012_06_012 crossref_primary_10_1109_TFUZZ_2011_2123899 |
| Cites_doi | 10.1016/S0167-8655(01)00045-9 10.1109/FUZZY.2005.1452508 10.1137/1.9781611972740.31 10.1109/34.713365 10.1016/S0020-0255(70)80056-1 10.1007/s00530-002-0070-3 10.1007/BF01908073 10.1142/S021821300000032X 10.1016/0165-0114(92)90227-U 10.1016/0031-3203(95)00120-4 10.1111/j.2517-6161.1977.tb01600.x 10.1016/j.patrec.2006.11.010 10.1109/FUZZY.2006.1681693 10.1109/91.669013 10.1016/0165-0114(78)90016-7 10.1016/j.patcog.2003.08.002 10.1109/91.940971 10.1109/ICCV.1998.710701 10.1109/FUZZY.2005.1452429 10.1145/1014052.1014128 10.1016/j.patcog.2007.02.019 10.1109/TKDE.2002.1033770 10.1016/0031-3203(89)90066-6 10.1109/FUZZY.2000.838651 10.1007/BF00130487 10.1016/0031-3203(94)90119-8 10.1109/21.87068 10.1016/0167-8655(85)90037-6 10.1016/S0218-4885(00)00053-8 10.1109/34.391417 10.1109/TFUZZ.2002.805899 10.1109/21.148412 10.1109/34.531803 10.1109/34.955109 10.1007/978-1-4757-0450-1 10.1002/9780470316801 10.1016/S0031-3203(96)00140-9 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D 7SP F28 FR3 |
| DOI | 10.1109/TFUZZ.2008.2005692 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Electronics & Communications Abstracts ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional Electronics & Communications Abstracts Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitleList | Technology Research Database Computer and Information Systems Abstracts Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1941-0034 |
| EndPage | 1581 |
| ExternalDocumentID | 2545341711 10_1109_TFUZZ_2008_2005692 4623157 |
| Genre | orig-research |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS TAE TN5 VH1 AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D RIG 7SP F28 FR3 |
| ID | FETCH-LOGICAL-c357t-b600c6a7281b1304da68bf8af9e6b176b3c430e3b3a3f51a0af4c30f28d5ea1c3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 20 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000262221000015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1063-6706 |
| IngestDate | Sun Nov 09 13:59:38 EST 2025 Sun Sep 28 14:00:19 EDT 2025 Sun Jun 29 16:41:23 EDT 2025 Sat Nov 29 06:46:21 EST 2025 Tue Nov 18 22:18:26 EST 2025 Wed Aug 27 06:03:27 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c357t-b600c6a7281b1304da68bf8af9e6b176b3c430e3b3a3f51a0af4c30f28d5ea1c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| PQID | 912308243 |
| PQPubID | 23500 |
| PageCount | 17 |
| ParticipantIDs | proquest_journals_912308243 proquest_miscellaneous_34503793 proquest_miscellaneous_880651820 ieee_primary_4623157 crossref_citationtrail_10_1109_TFUZZ_2008_2005692 crossref_primary_10_1109_TFUZZ_2008_2005692 |
| PublicationCentury | 2000 |
| PublicationDate | 2008-12-01 |
| PublicationDateYYYYMMDD | 2008-12-01 |
| PublicationDate_xml | – month: 12 year: 2008 text: 2008-12-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on fuzzy systems |
| PublicationTitleAbbrev | TFUZZ |
| PublicationYear | 2008 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref15 ref14 wagstaff (ref44) 2000 ref17 ref16 ref19 ref18 gustafson (ref21) 1979 ref50 ref46 ref48 ref47 wagstaff (ref45) 2001 ref42 kaufman (ref27) 1990 ref43 rubner (ref39) 1999 ref49 ref8 ref7 ref9 ref4 ref6 ref5 ref40 ref35 ref37 ref36 ref31 ref33 ref32 domeniconi (ref12) 2006 basu (ref3) 2002 ref2 ref38 dempster (ref10) 1977; 39 abu-mostafa (ref1) 1995; 272 keller (ref29) 2000 klein (ref30) 2002 sneath (ref22) 1973 ref24 ref23 ref26 ref25 ref20 ref28 manjunath (ref34) 2002 sen (ref41) 1998 diday (ref11) 1975 |
| References_xml | – ident: ref13 doi: 10.1016/S0167-8655(01)00045-9 – ident: ref20 doi: 10.1109/FUZZY.2005.1452508 – ident: ref4 doi: 10.1137/1.9781611972740.31 – ident: ref2 doi: 10.1109/34.713365 – ident: ref40 doi: 10.1016/S0020-0255(70)80056-1 – ident: ref50 doi: 10.1007/s00530-002-0070-3 – start-page: 307 year: 2002 ident: ref30 article-title: From instance-level constraints to space-level constraints: Making the most of prior knowledge in data clustering publication-title: Proc Int Conf Mach Learn – ident: ref47 doi: 10.1007/BF01908073 – ident: ref35 doi: 10.1142/S021821300000032X – ident: ref19 doi: 10.1016/0165-0114(92)90227-U – ident: ref5 doi: 10.1016/0031-3203(95)00120-4 – volume: 39 start-page: 1 year: 1977 ident: ref10 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J Roy Stat Soc Ser ? doi: 10.1111/j.2517-6161.1977.tb01600.x – ident: ref8 doi: 10.1016/j.patrec.2006.11.010 – start-page: 577 year: 2001 ident: ref45 article-title: Constrained k-means clustering with background knowledge publication-title: Proc Int Conf Mach Learn – ident: ref7 doi: 10.1109/FUZZY.2006.1681693 – start-page: 761 year: 1979 ident: ref21 article-title: Fuzzy clustering with a fuzzy covariance matrix publication-title: Proc IEEE CDC – year: 1999 ident: ref39 publication-title: Perceptual metrics for image database navigation – ident: ref42 doi: 10.1109/91.669013 – start-page: 1411 year: 1998 ident: ref41 article-title: Clustering of relational data containing noise and outliers publication-title: Proc IEEE Conf Fuzzy Syst – ident: ref38 doi: 10.1016/0165-0114(78)90016-7 – ident: ref17 doi: 10.1016/j.patcog.2003.08.002 – ident: ref31 doi: 10.1109/91.940971 – ident: ref48 doi: 10.1109/ICCV.1998.710701 – ident: ref26 doi: 10.1109/FUZZY.2005.1452429 – ident: ref32 doi: 10.1145/1014052.1014128 – ident: ref14 doi: 10.1016/j.patcog.2007.02.019 – ident: ref36 doi: 10.1109/TKDE.2002.1033770 – ident: ref25 doi: 10.1016/0031-3203(89)90066-6 – start-page: 1103 year: 2000 ident: ref44 article-title: Clustering with instance-level constraints publication-title: Proc Int Conf Mach Learn – year: 2006 ident: ref12 publication-title: Locally adaptive metrics for clustering high dimensional data – ident: ref16 doi: 10.1109/FUZZY.2000.838651 – ident: ref43 doi: 10.1007/BF00130487 – year: 1973 ident: ref22 publication-title: Numerical Taxonomy – ident: ref24 doi: 10.1016/0031-3203(94)90119-8 – ident: ref49 doi: 10.1109/21.87068 – ident: ref37 doi: 10.1016/0167-8655(85)90037-6 – ident: ref28 doi: 10.1016/S0218-4885(00)00053-8 – start-page: 19 year: 2002 ident: ref3 article-title: Semi-supervised clustering by seeding publication-title: Proc Int Conf Mach Learn – ident: ref23 doi: 10.1109/34.391417 – year: 2000 ident: ref29 publication-title: Fuzzy Measures and Integrals – year: 2002 ident: ref34 publication-title: Introduction to MPEG 7 Multimedia Content Description Language – ident: ref9 doi: 10.1109/TFUZZ.2002.805899 – ident: ref18 doi: 10.1109/21.148412 – ident: ref33 doi: 10.1109/34.531803 – start-page: 29 year: 1975 ident: ref11 article-title: Classification automatique sequentielle pour grands tableaux publication-title: Rev Fr Autom Inf Rech Oper – ident: ref46 doi: 10.1109/34.955109 – ident: ref6 doi: 10.1007/978-1-4757-0450-1 – year: 1990 ident: ref27 publication-title: Finding Groups in Data doi: 10.1002/9780470316801 – volume: 272 start-page: 64 year: 1995 ident: ref1 publication-title: Machines that learn from hints – ident: ref15 doi: 10.1016/S0031-3203(96)00140-9 |
| SSID | ssj0014518 |
| Score | 2.0286214 |
| Snippet | In this paper, we introduce a semisupervised approach for clustering and aggregating relational data (SS-CARD). We assume that data is available in a... [...] we assume that the relational information is represented by multiple dissimilarity matrices. |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1565 |
| SubjectTerms | Aggregates Algorithms Clustering Clustering algorithms Clustering methods Clusters Constrained clustering Data mining feature aggregation Feature extraction image database categorization Image databases Learning Learning systems Mathematical analysis Matrices Matrix methods Partitioning algorithms Pattern recognition relational clustering semisupervised clustering Sensor phenomena and characterization Studies |
| Title | Fuzzy Clustering and Aggregation of Relational Data With Instance-Level Constraints |
| URI | https://ieeexplore.ieee.org/document/4623157 https://www.proquest.com/docview/912308243 https://www.proquest.com/docview/34503793 https://www.proquest.com/docview/880651820 |
| Volume | 16 |
| WOSCitedRecordID | wos000262221000015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0034 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014518 issn: 1063-6706 databaseCode: RIE dateStart: 19930101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS-UwFD6ouHAWvmXqMwt3TrVt0qRZinpREBFURtyUJE0dQXrF2wr66z1JHziMCrMrbZqGfknOOTmPD2BXqiK1KEZCLQ0aKCllIWohSch1ifqGxhmdFJ5sQlxcZLe38nIKfg25MNZaH3xm992l9-UXY9O4o7IDhrI6TsU0TAvB21ytwWPA0rhNe-M05CLifYJMJA-uRzd3d23YpDtD4TL5Swh5VpV_tmIvX0YL_zeyRZjv9Ehy2AK_BFO2WoaFnqOBdEt2GX58KDi4Alej5u3tlRw9Nq4-At4iqirI4T0a3fceIjIuSR8fh90fq1qR3w_1H3Lm1Uhjw3MXZUQcz6dnl6gnq3AzOrk-Og07WoXQ0FTUoUYdx3AlEtRYUYKxQvFMl5kqpeU6FlxTw2hkqaaKlmmsIlUyQ6MyyRBWFRu6BjPVuLI_gTBUrpiWCfYTM5FoqYxkUrkqdCoVIg4g7v9zbrqa425wj7m3PSKZe2xaLswOmwD2hnee2oob37ZecWgMLTsgAtjo4cy7RTnJcQ664jyMBrAzPMXV5FwkqrLjZpJTlkYUt6wAyBctMueJdlXv1z__8gbM-ZASH_GyCTP1c2O3YNa81A-T520_Z98Bg3noVQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9UwFD9BNFEfRPmIE5U--KaTbf1aHwl6A_FyQ8IlEl6WtuuAhOwa7mYif72n3UcwColvy9Z1zX5tzzk9Hz-AD0qX3KEYiY2yaKBwymLUQrJYmAr1DYMzOisD2YSczfKzM3W8Ap_GXBjnXAg-c5_9ZfDllwvb-qOyXYayOuXyETzmjGVJl601-gwYT7vEN0FjIRMxpMgkanc-OT0_7wIn_SmKUNkfYijwqvy1GQcJM1n7v7G9hBe9Jkn2OuhfwYqr12FtYGkg_aJdh-d3Sg5uwMmkvb39RfavW18hAW8RXZdk7wLN7osAEllUZIiQw-6_6EaT71fNJTkMiqR18dTHGRHP9Bn4JZrlJpxOvs73D-KeWCG2lMsmNqjlWKFlhjoryjBWapGbKteVcsKkUhhqGU0cNVTTiqc60RWzNKmyHIHVqaVbsFovavcaCEP1ihmVYT8pk5lR2iqmtK9Dp7mUaQTp8J8L21cd94O7LoL1kagiYNOxYfbYRPBxfOdHV3PjwdYbHo2xZQ9EBNsDnEW_LJcFzkJfnofRCHbGp7ievJNE127RLgvKeEJx04qA3NMi975oX_f-zb-_vANPD-ZH02J6OPu2Dc9CgEmIf3kLq81N697BE_uzuVrevA_z9ze8seuc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fuzzy+Clustering+and+Aggregation+of+Relational+Data+With+Instance-Level+Constraints&rft.jtitle=IEEE+transactions+on+fuzzy+systems&rft.au=Frigui%2C+H.&rft.au=Cheul+Hwang&rft.date=2008-12-01&rft.pub=IEEE&rft.issn=1063-6706&rft.volume=16&rft.issue=6&rft.spage=1565&rft.epage=1581&rft_id=info:doi/10.1109%2FTFUZZ.2008.2005692&rft.externalDocID=4623157 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6706&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6706&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6706&client=summon |