Edge-Aided Computing and Transmission Scheduling for LTE-U-Enabled IoT

To facilitate the deployment of private industrial Internet-of-Things (IoT), applying long-term-evolution (LTE) over unlicensed spectrum (LTE-U) is a promising technology, which can deal with the licensed spectrum scarcity problem and the stringent quality-of-service (QoS) requirement via centralize...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on wireless communications Jg. 19; H. 12; S. 7881 - 7896
Hauptverfasser: He, Hongli, Shan, Hangguan, Huang, Aiping, Ye, Qiang, Zhuang, Weihua
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.12.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1536-1276, 1558-2248
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To facilitate the deployment of private industrial Internet-of-Things (IoT), applying long-term-evolution (LTE) over unlicensed spectrum (LTE-U) is a promising technology, which can deal with the licensed spectrum scarcity problem and the stringent quality-of-service (QoS) requirement via centralized control. In this paper, we investigate the computing offloading problem for LTE-U-enabled IoT, where computing tasks on an IoT device are either executed locally or offloaded to the edge server on an LTE-U base station. Considering a constrained edge computing cost (e.g., operation power consumption) for offloaded tasks, the task scheduling problem is formulated as a constrained Markov decision process (CMDP) to maximize the long-term average reward, which integrates both task completion profit and task completion delay. In order to address the uncertainty of task arrivals and channel availability, a constrained deep Q-learning-based task scheduling algorithm with provable convergence is proposed, where an adaptive reward function can appropriately bound the average edge computing cost. Extensive simulation results show that the proposed scheme considerably enhances the system performance.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1536-1276
1558-2248
DOI:10.1109/TWC.2020.3017207