Maximum Number of Steps Taken by Modular Exponentiation and Euclidean Algorithm

In this article we formalize in Mizar [1], [2] the maximum number of steps taken by some number theoretical algorithms, “right–to–left binary algorithm” for modular exponentiation and “Euclidean algorithm” [5]. For any natural numbers , , , “right–to–left binary algorithm” can calculate the natural...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Formalized mathematics Ročník 27; číslo 1; s. 87 - 91
Hlavní autoři: Okazaki, Hiroyuki, Nagao, Koh-ichi, Futa, Yuichi
Médium: Journal Article
Jazyk:angličtina
Vydáno: Bialystok Sciendo 01.04.2019
De Gruyter Brill Sp. z o.o., Paradigm Publishing Services
Témata:
ISSN:1426-2630, 1898-9934
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this article we formalize in Mizar [1], [2] the maximum number of steps taken by some number theoretical algorithms, “right–to–left binary algorithm” for modular exponentiation and “Euclidean algorithm” [5]. For any natural numbers , , , “right–to–left binary algorithm” can calculate the natural number, see (Def. 2), Algo ) := mod and for any integers , , “Euclidean algorithm” can calculate the non negative integer gcd( ). We have not formalized computational complexity of algorithms yet, though we had already formalize the “Euclidean algorithm” in [7]. For “right-to-left binary algorithm”, we formalize the theorem, which says that the required number of the modular squares and modular products in this algorithms are ⌊1+log ⌋ and for “Euclidean algorithm”, we formalize the Lamé’s theorem [6], which says the required number of the divisions in this algorithm is at most 5 log min( ). Our aim is to support the implementation of number theoretic tools and evaluating computational complexities of algorithms to prove the security of cryptographic systems.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1426-2630
1898-9934
DOI:10.2478/forma-2019-0009