Strong Functional Representation Lemma and Applications to Coding Theorems
This paper shows that for any random variables <inline-formula> <tex-math notation="LaTeX">X </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">Y </tex-math></inline-formula>, it is possible to represent &l...
Uložené v:
| Vydané v: | IEEE transactions on information theory Ročník 64; číslo 11; s. 6967 - 6978 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
01.11.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 0018-9448, 1557-9654 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | This paper shows that for any random variables <inline-formula> <tex-math notation="LaTeX">X </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">Y </tex-math></inline-formula>, it is possible to represent <inline-formula> <tex-math notation="LaTeX">Y </tex-math></inline-formula> as a function of <inline-formula> <tex-math notation="LaTeX">(X,Z) </tex-math></inline-formula> such that <inline-formula> <tex-math notation="LaTeX">Z </tex-math></inline-formula> is independent of <inline-formula> <tex-math notation="LaTeX">X </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">I(X;Z|Y)\le \log (I(X;Y)+1)+4 </tex-math></inline-formula> bits. We use this strong functional representation lemma (SFRL) to establish a bound on the rate needed for one-shot exact channel simulation for general (discrete or continuous) random variables, strengthening the results by Harsha et al. and Braverman and Garg, and to establish new and simple achievability results for one-shot variable-length lossy source coding, multiple description coding, and Gray-Wyner system. We also show that the SFRL can be used to reduce the channel with state noncausally known at the encoder to a point-to-point channel, which provides a simple achievability proof of the Gelfand-Pinsker theorem. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0018-9448 1557-9654 |
| DOI: | 10.1109/TIT.2018.2865570 |