Majorization-Minimization Algorithms in Signal Processing, Communications, and Machine Learning

This paper gives an overview of the majorization-minimization (MM) algorithmic framework, which can provide guidance in deriving problem-driven algorithms with low computational cost. A general introduction of MM is presented, including a description of the basic principle and its convergence result...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on signal processing Ročník 65; číslo 3; s. 794 - 816
Hlavní autori: Ying Sun, Babu, Prabhu, Palomar, Daniel P.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.02.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1053-587X, 1941-0476
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper gives an overview of the majorization-minimization (MM) algorithmic framework, which can provide guidance in deriving problem-driven algorithms with low computational cost. A general introduction of MM is presented, including a description of the basic principle and its convergence results. The extensions, acceleration schemes, and connection to other algorithmic frameworks are also covered. To bridge the gap between theory and practice, upperbounds for a large number of basic functions, derived based on the Taylor expansion, convexity, and special inequalities, are provided as ingredients for constructing surrogate functions. With the pre-requisites established, the way of applying MM to solving specific problems is elaborated by a wide range of applications in signal processing, communications, and machine learning.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2016.2601299