FBMC vs. PAM and DMT for High-Speed Wireline Communication

This paper demonstrates the first silicon-verified FBMC encoder and decoder designed to emulate beyond <inline-formula> <tex-math notation="LaTeX">224Gb/s </tex-math></inline-formula> wireline communication. It also compares the performance of FBMC to PAM and DMT in...

Full description

Saved in:
Bibliographic Details
Published in:IEEE open journal of circuits and systems Vol. 5; pp. 243 - 253
Main Authors: Cosson-Martin, Jeremy, Salinas, Jhoan, Shakiba, Hossein, Sheikholeslami, Ali
Format: Journal Article
Language:English
Published: New York IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2644-1225, 2644-1225
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper demonstrates the first silicon-verified FBMC encoder and decoder designed to emulate beyond <inline-formula> <tex-math notation="LaTeX">224Gb/s </tex-math></inline-formula> wireline communication. It also compares the performance of FBMC to PAM and DMT in three steps. First, the digital power and area consumption are compared using measured results from the manufactured test chip. Second, the data rate is determined using lab-measured results. And third, the performance when subject to notched channels is analyzed using simulation results. Finally, we present a method to emulate wireline links while reducing the emulator complexity and simulation time by one to two orders of magnitude over conventional over-sampled techniques. Our analysis indicates that given a smooth channel and an SNR which enables an average spectral efficiency of <inline-formula> <tex-math notation="LaTeX">4bits/sec/Hz </tex-math></inline-formula> at a bit-error rate of 10-3, both DMT and FBMC perform similarly to a conventional PAM-4 link. However, when noise is reduced and a spectral notch is applied, thereby achieving an average spectral efficiency of <inline-formula> <tex-math notation="LaTeX">4.6bits/sec/Hz </tex-math></inline-formula>, DMT and FBMC can outperform PAM by 2.1 and 2.3 times, respectively. In addition, we estimate FBMC's encoder and decoder power consumption at <inline-formula> <tex-math notation="LaTeX">1.53pJ/b </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">1.98pJ/b </tex-math></inline-formula>, respectively, and area requirement at <inline-formula> <tex-math notation="LaTeX">0.07mm^{2} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">0.17mm^{2} </tex-math></inline-formula>, respectively, which is similar to DMT. These values are competitive with similar <inline-formula> <tex-math notation="LaTeX">22nm </tex-math></inline-formula> PAM transceivers, suggesting that DMT and FBMC are viable alternatives to PAM for next-generation high-speed wireline applications.
AbstractList This paper demonstrates the first silicon-verified FBMC encoder and decoder designed to emulate beyond [Formula Omitted] wireline communication. It also compares the performance of FBMC to PAM and DMT in three steps. First, the digital power and area consumption are compared using measured results from the manufactured test chip. Second, the data rate is determined using lab-measured results. And third, the performance when subject to notched channels is analyzed using simulation results. Finally, we present a method to emulate wireline links while reducing the emulator complexity and simulation time by one to two orders of magnitude over conventional over-sampled techniques. Our analysis indicates that given a smooth channel and an SNR which enables an average spectral efficiency of [Formula Omitted] at a bit-error rate of 10-3, both DMT and FBMC perform similarly to a conventional PAM-4 link. However, when noise is reduced and a spectral notch is applied, thereby achieving an average spectral efficiency of [Formula Omitted], DMT and FBMC can outperform PAM by 2.1 and 2.3 times, respectively. In addition, we estimate FBMC’s encoder and decoder power consumption at [Formula Omitted] and [Formula Omitted], respectively, and area requirement at [Formula Omitted] and [Formula Omitted], respectively, which is similar to DMT. These values are competitive with similar [Formula Omitted] PAM transceivers, suggesting that DMT and FBMC are viable alternatives to PAM for next-generation high-speed wireline applications.
This paper demonstrates the first silicon-verified FBMC encoder and decoder designed to emulate beyond <inline-formula> <tex-math notation="LaTeX">224Gb/s </tex-math></inline-formula> wireline communication. It also compares the performance of FBMC to PAM and DMT in three steps. First, the digital power and area consumption are compared using measured results from the manufactured test chip. Second, the data rate is determined using lab-measured results. And third, the performance when subject to notched channels is analyzed using simulation results. Finally, we present a method to emulate wireline links while reducing the emulator complexity and simulation time by one to two orders of magnitude over conventional over-sampled techniques. Our analysis indicates that given a smooth channel and an SNR which enables an average spectral efficiency of <inline-formula> <tex-math notation="LaTeX">4bits/sec/Hz </tex-math></inline-formula> at a bit-error rate of 10-3, both DMT and FBMC perform similarly to a conventional PAM-4 link. However, when noise is reduced and a spectral notch is applied, thereby achieving an average spectral efficiency of <inline-formula> <tex-math notation="LaTeX">4.6bits/sec/Hz </tex-math></inline-formula>, DMT and FBMC can outperform PAM by 2.1 and 2.3 times, respectively. In addition, we estimate FBMC's encoder and decoder power consumption at <inline-formula> <tex-math notation="LaTeX">1.53pJ/b </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">1.98pJ/b </tex-math></inline-formula>, respectively, and area requirement at <inline-formula> <tex-math notation="LaTeX">0.07mm^{2} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">0.17mm^{2} </tex-math></inline-formula>, respectively, which is similar to DMT. These values are competitive with similar <inline-formula> <tex-math notation="LaTeX">22nm </tex-math></inline-formula> PAM transceivers, suggesting that DMT and FBMC are viable alternatives to PAM for next-generation high-speed wireline applications.
This paper demonstrates the first silicon-verified FBMC encoder and decoder designed to emulate beyond <tex-math notation="LaTeX">$224Gb/s$ </tex-math> wireline communication. It also compares the performance of FBMC to PAM and DMT in three steps. First, the digital power and area consumption are compared using measured results from the manufactured test chip. Second, the data rate is determined using lab-measured results. And third, the performance when subject to notched channels is analyzed using simulation results. Finally, we present a method to emulate wireline links while reducing the emulator complexity and simulation time by one to two orders of magnitude over conventional over-sampled techniques. Our analysis indicates that given a smooth channel and an SNR which enables an average spectral efficiency of <tex-math notation="LaTeX">$4bits/sec/Hz$ </tex-math> at a bit-error rate of 10-3, both DMT and FBMC perform similarly to a conventional PAM-4 link. However, when noise is reduced and a spectral notch is applied, thereby achieving an average spectral efficiency of <tex-math notation="LaTeX">$4.6bits/sec/Hz$ </tex-math>, DMT and FBMC can outperform PAM by 2.1 and 2.3 times, respectively. In addition, we estimate FBMC’s encoder and decoder power consumption at <tex-math notation="LaTeX">$1.53pJ/b$ </tex-math> and <tex-math notation="LaTeX">$1.98pJ/b$ </tex-math>, respectively, and area requirement at <tex-math notation="LaTeX">$0.07mm^{2}$ </tex-math> and <tex-math notation="LaTeX">$0.17mm^{2}$ </tex-math>, respectively, which is similar to DMT. These values are competitive with similar <tex-math notation="LaTeX">$22nm$ </tex-math> PAM transceivers, suggesting that DMT and FBMC are viable alternatives to PAM for next-generation high-speed wireline applications.
Author Cosson-Martin, Jeremy
Shakiba, Hossein
Sheikholeslami, Ali
Salinas, Jhoan
Author_xml – sequence: 1
  givenname: Jeremy
  orcidid: 0000-0001-8420-1501
  surname: Cosson-Martin
  fullname: Cosson-Martin, Jeremy
  email: jeremy.cosson.martin@mail.utoronto.ca
  organization: Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
– sequence: 2
  givenname: Jhoan
  orcidid: 0000-0001-9495-0135
  surname: Salinas
  fullname: Salinas, Jhoan
  organization: Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
– sequence: 3
  givenname: Hossein
  orcidid: 0000-0002-6247-512X
  surname: Shakiba
  fullname: Shakiba, Hossein
  organization: HiLink SerDes Group, Huawei Technologies Canada, Markham, ON, Canada
– sequence: 4
  givenname: Ali
  orcidid: 0000-0003-0970-6897
  surname: Sheikholeslami
  fullname: Sheikholeslami, Ali
  organization: Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
BookMark eNpNkEtLxDAQx4Mo-PwC4qHguWtmkjStt7W-cVFQ8RjSZqJZdps13RX89lZXxNMMw_8x_HbZZhc7YuwQ-AiAVyf3t_X4cYQc5UhI4Bz5BtvBQsocENXmv32bHfT9lA8SBQCod9jp5dmkzj76UfYwnmS2c9n55CnzMWXX4fUtf1wQuewlJJqFjrI6zuerLrR2GWK3z7a8nfV08Dv32PPlxVN9nd_dX93U47u8FUovc2yA27bU2JBywupGOKsEWICyqkohPZaFAFd4apFUVWGjnNMgveXOy4rEHrtZ57pop2aRwtymTxNtMD-HmF6NTcvQzsgIEmVTohaIrcShwUNTYKFb6aQvSxiyjtdZixTfV9QvzTSuUje8bwTXSmIhtBpUuFa1KfZ9Iv_XCtx8Izc_yM03cvOLfDAdrU2BiP4ZlKwqUYgvT_N6Hg
CODEN IOJCC3
Cites_doi 10.1109/ISSCC42613.2021.9365746
10.1109/SURV.2013.121213.00263
10.1109/WPMC.2017.8301823
10.1109/jssc.2015.2504410
10.1109/TCSII.2003.813592
10.1109/JLT.2008.2010061
10.1109/MSP.2011.940267
10.1109/ISSCC42614.2022.9731794
10.1109/MWSCAS57524.2023.10405989
10.1109/ISSCC42613.2021.9365853
10.1109/ISCAS45731.2020.9180482
10.1109/TCSI.2023.3234920
10.1002/j.1538-7305.1948.tb01338.x
10.1109/ojcas.2020.3041239
10.1109/ISSCC.2014.6757506
10.1109/ISSCC.2019.8662421
10.1109/ojcas.2022.3189550
10.1109/ACCESS.2018.2818883
10.1109/ISSCC.2019.8662505
10.1109/TCOM.1967.1089674
10.1109/ISSCC42614.2022.9731650
10.1007/b117438
10.1109/ojcas.2021.3129929
10.1109/ojcas.2020.3040947
10.1109/ojcas.2022.3197333
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOA
DOI 10.1109/OJCAS.2024.3410020
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2644-1225
EndPage 253
ExternalDocumentID oai_doaj_org_article_3e38b827322c42118f1b6267c4d4f881
10_1109_OJCAS_2024_3410020
10549936
Genre orig-research
GrantInformation_xml – fundername: Natural Sciences and Engineering Research Council (NSERC)
GroupedDBID 0R~
97E
AAJGR
ABAZT
ABVLG
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
ESBDL
GROUPED_DOAJ
JAVBF
M~E
OCL
OK1
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c357t-2b10ac872be5d3a7b3da531a11899834f28631d6fec2e5992b5dd714fa0df49e3
IEDL.DBID DOA
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001262735800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2644-1225
IngestDate Tue Oct 14 18:46:36 EDT 2025
Mon Jun 30 17:56:15 EDT 2025
Sat Nov 29 05:59:26 EST 2025
Wed Aug 27 01:55:50 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-2b10ac872be5d3a7b3da531a11899834f28631d6fec2e5992b5dd714fa0df49e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9495-0135
0000-0003-0970-6897
0000-0001-8420-1501
0000-0002-6247-512X
OpenAccessLink https://doaj.org/article/3e38b827322c42118f1b6267c4d4f881
PQID 3075426375
PQPubID 5075790
PageCount 11
ParticipantIDs crossref_primary_10_1109_OJCAS_2024_3410020
doaj_primary_oai_doaj_org_article_3e38b827322c42118f1b6267c4d4f881
proquest_journals_3075426375
ieee_primary_10549936
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE open journal of circuits and systems
PublicationTitleAbbrev OJCAS
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref31
Saini (ref25) 2023
ref30
ref11
ref10
ref32
(ref2) 2022
ref17
ref16
ref19
(ref24) 2018
ref18
Taylor (ref1) 2022
ref26
ref20
(ref23) 2017
Cioffi (ref21) 1997
ref28
ref27
ref29
ref8
ref7
ref4
ref3
ref6
ref5
Arar (ref22) 2017
Engels (ref9) 2002
References_xml – ident: ref8
  doi: 10.1109/ISSCC42613.2021.9365746
– ident: ref12
  doi: 10.1109/SURV.2013.121213.00263
– volume-title: Lecture Notes for Advanced Digital Communication: Multi-Channel Modulation
  year: 1997
  ident: ref21
– volume-title: Volume of data/information created, captured, copied, and consumed worldwide from 2010 to 2020, with forecasts from 2021 to 2025
  year: 2022
  ident: ref1
– ident: ref10
  doi: 10.1109/WPMC.2017.8301823
– ident: ref31
  doi: 10.1109/jssc.2015.2504410
– ident: ref18
  doi: 10.1109/TCSII.2003.813592
– ident: ref7
  doi: 10.1109/JLT.2008.2010061
– ident: ref13
  doi: 10.1109/MSP.2011.940267
– ident: ref3
  doi: 10.1109/ISSCC42614.2022.9731794
– volume-title: IEEE P802.3ck task force—Tools and channels
  year: 2018
  ident: ref24
– ident: ref16
  doi: 10.1109/MWSCAS57524.2023.10405989
– volume-title: Next generation CEI-224G framework
  year: 2022
  ident: ref2
– ident: ref4
  doi: 10.1109/ISSCC42613.2021.9365853
– ident: ref29
  doi: 10.1109/ISCAS45731.2020.9180482
– ident: ref6
  doi: 10.1109/TCSI.2023.3234920
– ident: ref32
  doi: 10.1002/j.1538-7305.1948.tb01338.x
– ident: ref19
  doi: 10.1109/ojcas.2020.3041239
– ident: ref27
  doi: 10.1109/ISSCC.2014.6757506
– ident: ref20
  doi: 10.1109/ISSCC.2019.8662421
– ident: ref28
  doi: 10.1109/ojcas.2022.3189550
– ident: ref11
  doi: 10.1109/ACCESS.2018.2818883
– ident: ref5
  doi: 10.1109/ISSCC.2019.8662505
– ident: ref17
  doi: 10.1109/TCOM.1967.1089674
– ident: ref26
  doi: 10.1109/ISSCC42614.2022.9731650
– volume-title: An introduction to the CORDIC Algorith
  year: 2017
  ident: ref22
– volume-title: Wireless OFDM Systems, How to Make Them Work?
  year: 2002
  ident: ref9
  doi: 10.1007/b117438
– ident: ref15
  doi: 10.1109/ojcas.2021.3129929
– ident: ref30
  doi: 10.1109/ojcas.2020.3040947
– volume-title: Properties of Convolution in Signals and Systems
  year: 2023
  ident: ref25
– ident: ref14
  doi: 10.1109/ojcas.2022.3197333
– volume-title: CORDIC part two: Rectangular to polar conversion: Gisselquist technology
  year: 2017
  ident: ref23
SSID ssj0002511127
Score 2.2566729
Snippet This paper demonstrates the first silicon-verified FBMC encoder and decoder designed to emulate beyond <inline-formula> <tex-math notation="LaTeX">224Gb/s...
This paper demonstrates the first silicon-verified FBMC encoder and decoder designed to emulate beyond [Formula Omitted] wireline communication. It also...
This paper demonstrates the first silicon-verified FBMC encoder and decoder designed to emulate beyond <tex-math notation="LaTeX">$224Gb/s$ </tex-math>...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 243
SubjectTerms Amplitude modulation
Bit error rate
Coders
Discrete multi-tone (DMT)
emulation
Fast Fourier transforms
Filter banks
filter-bank multi-carrier (FBMC)
Frequency modulation
High speed
Indexes
Modulation
OFDM
Optimization
orthogonal frequency division multiplexing (OFDM)
Power consumption
pulse amplitude modulation (PAM)
Pulse width modulation
SERDES
Signal to noise ratio
Symbols
wireline
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_o8KAHv8X5RQ7epLNN0ibxNqdDhKmwCd5Ck7yCl21s07_fJO3EIR68lZK24Ze-j9_Ley8Al7JCJzDHJC0cS7hIXSKVMImyoii9fQiMLB42IZ6e5NubemmK1WMtDCLG5DPshMu4l-8m9iOEyryEBzbDinVYF6Koi7W-AyrBV86oWBbGpOr6-bHXHXoKSHnH6-rgGK0Yn9ijvzlU5Zcmjualv_PPie3CduNHkm698HuwhuN92PrRXfAAbvq3gx75nHfIS3dAyrEjd4MR8U4qCckdyXDqDRcJ2a_B0yQrlSKH8Nq_H_UekuaohMSyXCwSarK0tFJQg7ljpTDMlV66Sk8fPJ9ivKKyYJkrKrQUc6WoyZ0TGa_K1FVcITuC1ngyxmMgRY5-nESZUsUpNSWXmX-Ttc5xZXjahqslhnpad8TQkUmkSkfEdUBcN4i34TbA_D0ydLOONzx-uhEOzZBJI70jRanlnpHKKjOeaAnLHa-kzNpwGDD_8bka7jacLVdNN6I3115p5aELvchP_njsFDbDFOtAyhm0FrMPPIcN-7l4n88u4l_1Beq5xyU
  priority: 102
  providerName: IEEE
Title FBMC vs. PAM and DMT for High-Speed Wireline Communication
URI https://ieeexplore.ieee.org/document/10549936
https://www.proquest.com/docview/3075426375
https://doaj.org/article/3e38b827322c42118f1b6267c4d4f881
Volume 5
WOSCitedRecordID wos001262735800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2644-1225
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002511127
  issn: 2644-1225
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 2644-1225
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002511127
  issn: 2644-1225
  databaseCode: M~E
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQYoAB8VFEoFQe2FBax3Zim60trRBSS6UWqZsVf0RiCVVbOvLbsZ0UtWJgYckQWXHyLr57z_LdAXDPC2uYTW2MMkNiypCJuWAqFppluYsPXpGFZhNsPObzuZjstPryZ8Kq8sAVcB1iCVfcBVmMNXVqhReJciScaWpowUPSNUZM7Igp74M9cU4w22bJINF5fel3p04PYtp2jtuzpL1IFAr21x1WfrnlEGuGZ-C0JomwW73cOTiw5QU42SkdeAkeh71RH25WbTjpjmBeGvg0mkHHQKE_uRFPFy4qQX-01dNIuJcG0gBvw8Gs_xzXfRBiTVK2jrFKUK45w8qmhuRMEZO7pZM7MJxYIrTAPCOJyQqrsU2FwCo1hiW0yJEpqLDkChyWH6W9BjBLrRvHLUdYUIxVTnninqS1MVQoiiLwsMVELqpyFzLIBCRkQFB6BGWNYAR6Hrafkb5UdbjhDChrA8q_DBiBhgd9ZzovWUkWgebWCrJeVyvpPFLqS8yz9OY_5r4Fx_57qi2VJjhcLz_tHTjSm_X7atkKv5S7jr4GrZAY-A0zFMo9
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7xqEQ58Gi36pZHfeBWZev4Edu9LduuoLBbJLYSNyu2J1IvC2IXfj-2k0WgqofeoshJrM-ZxzeeGQOc6AaDQokFrQIvhKKh0Ea5wnhV1dE-JEaWD5tQ06m-uTFXXbF6roVBxJx8hoN0mffyw61_SKGyKOGJzfBqHTalEIy25VrPIZXkLZdMrUpjqPn66-doeB1JIBODqK2Ta_TK_OQu_d2xKn_p4mxgxrv_ObU92Ok8STJsl34f1nD-DrZf9Bd8D9_Gp5MReVwMyNVwQup5IN8nMxLdVJLSO4rru2i6SMp_Tb4meVUr0oPf4x-z0VnRHZZQeC7VsmCupLXXijmUgdfK8VBH-aojgYiMiouG6YqXoWrQM5TGMCdDUKVoahoaYZB_gI357Rw_AqkkxnEaNWVGMOZqocv4Ju9DEMYJ2ocvKwztXdsTw2YuQY3NiNuEuO0Q78Npgvl5ZOpnnW9E_GwnHpYj105HV4oxLyIn1U3pItVSXgTRaF32oZcwf_G5Fu4-HK5WzXbCt7BRbcnUh17JT_947DNsnc0ml_byfHpxAG_TdNuwyiFsLO8f8Aje-Mfln8X9cf7DngB0osps
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FBMC+vs.+PAM+and+DMT+for+High-Speed+Wireline+Communication&rft.jtitle=IEEE+open+journal+of+circuits+and+systems&rft.au=Cosson-Martin%2C+Jeremy&rft.au=Salinas%2C+Jhoan&rft.au=Shakiba%2C+Hossein&rft.au=Sheikholeslami%2C+Ali&rft.date=2024&rft.pub=IEEE&rft.eissn=2644-1225&rft.volume=5&rft.spage=243&rft.epage=253&rft_id=info:doi/10.1109%2FOJCAS.2024.3410020&rft.externalDocID=10549936
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2644-1225&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2644-1225&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2644-1225&client=summon