Parameterized Two‐Qubit Gates for Enhanced Variational Quantum Eigensolver

The variational quantum eigensolver is a prominent hybrid quantum‐classical algorithm expected to impact near‐term quantum devices. They are usually based on a circuit ansatz consisting of parameterized single‐qubit gates and fixed two‐qubit gates. The effect of parameterized two‐qubit gates in the...

Full description

Saved in:
Bibliographic Details
Published in:Annalen der Physik Vol. 534; no. 12
Main Authors: Rasmussen, Stig Elkjær, Zinner, Nikolaj Thomas
Format: Journal Article
Language:English
Published: Weinheim Wiley Subscription Services, Inc 01.12.2022
Subjects:
ISSN:0003-3804, 1521-3889
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The variational quantum eigensolver is a prominent hybrid quantum‐classical algorithm expected to impact near‐term quantum devices. They are usually based on a circuit ansatz consisting of parameterized single‐qubit gates and fixed two‐qubit gates. The effect of parameterized two‐qubit gates in the variational quantum eigensolver is studied. A variational quantum eigensolver algorithm is simulated using fixed and parameterized two‐qubit gates in the circuit ansatz and it is shown that the parameterized versions outperform the fixed versions, both when it comes to best energy and reducing outliers, for a range of Hamiltonians with applications in quantum chemistry and materials science. The parameterized quantum circuit used in variational quantum algorithms usually consists of parameterized single‐qubit gates and fixed entangling multi‐qubit gates. Here, it is considered what happens when the entangling gates become parameterized, which allows for directly tuning the entangling power of the circuit. The parameterized entangling gates are shown to outperform the fixed versions.
AbstractList The variational quantum eigensolver is a prominent hybrid quantum‐classical algorithm expected to impact near‐term quantum devices. They are usually based on a circuit ansatz consisting of parameterized single‐qubit gates and fixed two‐qubit gates. The effect of parameterized two‐qubit gates in the variational quantum eigensolver is studied. A variational quantum eigensolver algorithm is simulated using fixed and parameterized two‐qubit gates in the circuit ansatz and it is shown that the parameterized versions outperform the fixed versions, both when it comes to best energy and reducing outliers, for a range of Hamiltonians with applications in quantum chemistry and materials science. The parameterized quantum circuit used in variational quantum algorithms usually consists of parameterized single‐qubit gates and fixed entangling multi‐qubit gates. Here, it is considered what happens when the entangling gates become parameterized, which allows for directly tuning the entangling power of the circuit. The parameterized entangling gates are shown to outperform the fixed versions.
The variational quantum eigensolver is a prominent hybrid quantum‐classical algorithm expected to impact near‐term quantum devices. They are usually based on a circuit ansatz consisting of parameterized single‐qubit gates and fixed two‐qubit gates. The effect of parameterized two‐qubit gates in the variational quantum eigensolver is studied. A variational quantum eigensolver algorithm is simulated using fixed and parameterized two‐qubit gates in the circuit ansatz and it is shown that the parameterized versions outperform the fixed versions, both when it comes to best energy and reducing outliers, for a range of Hamiltonians with applications in quantum chemistry and materials science.
The variational quantum eigensolver is a prominent hybrid quantum‐classical algorithm expected to impact near‐term quantum devices. They are usually based on a circuit ansatz consisting of parameterized single‐qubit gates and fixed two‐qubit gates. The effect of parameterized two‐qubit gates in the variational quantum eigensolver is studied. A variational quantum eigensolver algorithm is simulated using fixed and parameterized two‐qubit gates in the circuit ansatz and it is shown that the parameterized versions outperform the fixed versions, both when it comes to best energy and reducing outliers, for a range of Hamiltonians with applications in quantum chemistry and materials science.
Author Rasmussen, Stig Elkjær
Zinner, Nikolaj Thomas
Author_xml – sequence: 1
  givenname: Stig Elkjær
  orcidid: 0000-0001-7917-0309
  surname: Rasmussen
  fullname: Rasmussen, Stig Elkjær
  email: stig@phys.au.dk
  organization: Aarhus University
– sequence: 2
  givenname: Nikolaj Thomas
  orcidid: 0000-0002-5972-9790
  surname: Zinner
  fullname: Zinner, Nikolaj Thomas
  organization: Kvantify Aps
BookMark eNqFkMtKAzEUhoNUsNZuXQ-4nnpymduy1FqFoi1Ut0NmJqMp06QmGUtd-Qg-o09iakVBEFc5Oef_zuU_Rh2llUDoFMMAA5Bzrqr1gAAhAJSmB6iLI4JDmqZZB3XBJ30M7Aj1rV36L0TgxayLpjNu-Eo4YeSLqILFRr-_vs3bQrpgwp2wQa1NMFaPXJW-fM-N5E5qxZtg3nLl2lUwlg9CWd08C3OCDmveWNH_envo7nK8GF2F09vJ9Wg4DUsaJWnIGGYkS3BGmCAli3jFMK6gYHHkyxXLoKZVnAAUCYWYA6_KmNa4FKXgSVYA7aGzfd-10U-tsC5f6tb4pWxOEpZkLMKUetVgryqNttaIOl8bueJmm2PId6blO9Pyb9M8wH4BpXSf5zrDZfM3lu2xjWzE9p8h-fDmYvbDfgB2xoNg
CitedBy_id crossref_primary_10_1016_j_ress_2025_111153
crossref_primary_10_1088_2058_9565_ace2e6
crossref_primary_10_1109_ACCESS_2023_3255417
crossref_primary_10_1002_qute_202300329
crossref_primary_10_1016_j_psep_2024_04_032
Cites_doi 10.1088/1367-2630/17/11/113019
10.1103/PhysRevA.82.042339
10.1126/science.abb9811
10.1002/wcms.1580
10.1103/PhysRevA.98.022322
10.1103/PhysRevA.101.022308
10.1103/PhysRevX.6.031007
10.1021/acs.chemrev.9b00829
10.1103/PRXQuantum.2.040204
10.1038/ncomms5213
10.1063/1.5089550
10.1038/s41534-019-0240-1
10.1038/s42254-021-00348-9
10.1038/nature23879
10.1103/PhysRevApplied.6.064007
10.1103/RevModPhys.92.015003
10.1038/s41534-019-0209-0
10.1103/PhysRevLett.102.090502
10.1103/PhysRevA.103.032605
10.1103/PhysRevLett.100.247001
10.1103/PhysRevA.102.062612
10.1002/qute.201900070
10.1103/PhysRevResearch.1.033062
10.1103/PhysRevResearch.2.033097
10.1103/PhysRevLett.103.110501
10.1103/PhysRevApplied.10.024052
10.22331/q-2018-08-06-79
10.1103/PhysRevA.96.022330
10.1103/PhysRevApplied.10.054062
10.1088/2058-9565/ab4eb5
10.1103/PhysRevB.81.134507
10.1007/BF01331938
10.1038/s41534-018-0088-9
10.1002/wcms.1340
10.1103/PhysRevApplied.14.024070
10.1088/1367-2630/18/2/023023
10.7566/JPSJ.90.032001
10.1021/acs.jctc.8b00943
10.1021/acs.chemrev.8b00803
10.1002/qute.202000063
10.1007/978-1-84628-887-6
10.1103/RevModPhys.94.015004
10.1103/PhysRevLett.107.080502
ContentType Journal Article
Copyright 2022 The Authors. Annalen der Physik published by Wiley‐VCH GmbH
2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. Annalen der Physik published by Wiley‐VCH GmbH
– notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7U5
8FD
H8D
L7M
DOI 10.1002/andp.202200338
DatabaseName Wiley-Blackwell Open Access Collection
CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
CrossRef
Aerospace Database
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1521-3889
EndPage n/a
ExternalDocumentID 10_1002_andp_202200338
ANDP202200338
Genre article
GrantInformation_xml – fundername: Danmarks Frie Forskningsfond
GroupedDBID -DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
24P
2WC
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
669
66C
692
6J9
6P2
6TJ
6TS
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
GYQRN
H.T
H.X
HBH
HF~
HGLYW
HVGLF
HZ~
IX1
J0M
JPC
KQ8
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6R
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGL
RIWAO
RJQFR
RNS
RNW
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TN5
TUS
UB1
UPT
UQL
V8K
VH1
W8V
W99
WBKPD
WGJPS
WH7
WIB
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XOL
XPP
XV2
ZY4
ZZTAW
~02
~IA
~WT
AAMMB
AAYXX
ADMLS
ADXHL
AEFGJ
AETEA
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
7U5
8FD
H8D
L7M
ID FETCH-LOGICAL-c3578-44142971924e2c45ad411d0b465578d490f3d6700b7306a0adc63f1cecea79b03
IEDL.DBID 24P
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000865838100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0003-3804
IngestDate Fri Jul 25 12:18:04 EDT 2025
Sat Nov 29 04:00:46 EST 2025
Tue Nov 18 22:31:04 EST 2025
Wed Jan 22 16:22:21 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3578-44142971924e2c45ad411d0b465578d490f3d6700b7306a0adc63f1cecea79b03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7917-0309
0000-0002-5972-9790
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fandp.202200338
PQID 2747945133
PQPubID 946351
PageCount 7
ParticipantIDs proquest_journals_2747945133
crossref_primary_10_1002_andp_202200338
crossref_citationtrail_10_1002_andp_202200338
wiley_primary_10_1002_andp_202200338_ANDP202200338
PublicationCentury 2000
PublicationDate December 2022
2022-12-00
20221201
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: December 2022
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Annalen der Physik
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 4
2015; 17
2021; 3
2019; 6
2019; 5
2021; 2
2011
2022; 94
2019; 2
2020; 120
2019; 1
2021; 103
2019; 15
2020; 369
2020; 14
2020; 101
2020; 102
2016; 18
2010; 81
2008; 100
2021; 90
2010; 82
2017; 549
2016; 6
2020; 6
2017; 96
2018; 8
2014; 5
2018; 2
2020; 3
2021; 12
2011; 107
2020; 2
2018; 4
2021; 11
2022
1928; 47
2021
2020
2020; 92
2018
2009; 102
2017
2019; 119
2014
2018; 98
2018; 10
2009; 103
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
Sung Y. (e_1_2_9_37_1) 2021; 11
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_12_1
e_1_2_9_33_1
Pesah A. (e_1_2_9_53_1) 2021; 11
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
Motta M. (e_1_2_9_13_1) 2021; 12
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_1_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – year: 2011
– volume: 4
  start-page: 38
  year: 2018
  publication-title: npj Quantum Inf.
– volume: 101
  year: 2020
  publication-title: Phys. Rev. A
– volume: 6
  year: 2019
  publication-title: Appl. Phys. Rev.
– volume: 102
  year: 2009
  publication-title: Phys. Rev. Lett.
– volume: 2
  year: 2020
  publication-title: Phys. Rev. Res.
– volume: 12
  year: 2021
  publication-title: WIREs Comput. Mol. Sci.
– year: 2021
– volume: 5
  start-page: 99
  year: 2019
  publication-title: npj Quantum Inf.
– volume: 2
  year: 2019
  publication-title: Adv. Quantum Technol.
– volume: 90
  year: 2021
  publication-title: J. Phys. Soc. Jpn.
– year: 2018
– year: 2014
– volume: 6
  year: 2016
  publication-title: Phys. Rev. Appl.
– volume: 119
  year: 2019
  publication-title: Chem. Rev.
– volume: 81
  year: 2010
  publication-title: Phys. Rev. B
– volume: 18
  year: 2016
  publication-title: New J. Phys.
– volume: 103
  year: 2009
  publication-title: Phys. Rev. Lett.
– volume: 5
  start-page: 4213
  year: 2014
  publication-title: Nat. Commun.
– volume: 2
  start-page: 79
  year: 2018
  publication-title: Quantum
– year: 2022
– volume: 10
  year: 2018
  publication-title: Phys. Rev. Appl.
– volume: 98
  year: 2018
  publication-title: Phys. Rev. A
– volume: 3
  start-page: 625
  year: 2021
  publication-title: Nat. Rev. Phys.
– volume: 3
  year: 2020
  publication-title: Adv. Quantum Technol.
– volume: 6
  start-page: 10
  year: 2020
  publication-title: npj Quantum Inf.
– volume: 100
  year: 2008
  publication-title: Phys. Rev. Lett.
– volume: 2
  year: 2021
  publication-title: PRX Quantum
– volume: 47
  start-page: 631
  year: 1928
  publication-title: Z. Phys.
– volume: 96
  year: 2017
  publication-title: Phys. Rev. A
– volume: 14
  year: 2020
  publication-title: Phys. Rev. Appl.
– volume: 369
  start-page: 1084
  year: 2020
  publication-title: Science
– volume: 15
  start-page: 249
  year: 2019
  publication-title: J. Chem. Theory Comput.
– volume: 11
  year: 2021
  publication-title: Phys. Rev. X
– volume: 94
  year: 2022
  publication-title: Rev. Mod. Phys.
– volume: 1
  year: 2019
  publication-title: Phys. Rev. Res.
– volume: 103
  year: 2021
  publication-title: Phys. Rev. A
– volume: 8
  year: 2018
  publication-title: WIREs Comput. Mol. Sci.
– volume: 6
  year: 2016
  publication-title: Phys. Rev. X
– volume: 549
  start-page: 242
  year: 2017
  publication-title: Nature
– year: 2020
– volume: 4
  year: 2019
  publication-title: Quantum Sci. Technol.
– volume: 92
  year: 2020
  publication-title: Rev. Mod. Phys.
– volume: 120
  year: 2020
  publication-title: Chem. Rev.
– year: 2017
– volume: 82
  year: 2010
  publication-title: Phys. Rev. A
– volume: 107
  year: 2011
  publication-title: Phys. Rev. Lett.
– volume: 17
  year: 2015
  publication-title: New J. Phys.
– volume: 102
  year: 2020
  publication-title: Phys. Rev. A
– ident: e_1_2_9_28_1
  doi: 10.1088/1367-2630/17/11/113019
– ident: e_1_2_9_27_1
  doi: 10.1103/PhysRevA.82.042339
– ident: e_1_2_9_48_1
  doi: 10.1126/science.abb9811
– volume: 12
  start-page: e1580
  year: 2021
  ident: e_1_2_9_13_1
  publication-title: WIREs Comput. Mol. Sci.
  doi: 10.1002/wcms.1580
– ident: e_1_2_9_20_1
– ident: e_1_2_9_9_1
  doi: 10.1103/PhysRevA.98.022322
– ident: e_1_2_9_30_1
  doi: 10.1103/PhysRevA.101.022308
– ident: e_1_2_9_6_1
  doi: 10.1103/PhysRevX.6.031007
– ident: e_1_2_9_47_1
  doi: 10.1021/acs.chemrev.9b00829
– ident: e_1_2_9_43_1
– ident: e_1_2_9_33_1
  doi: 10.1103/PRXQuantum.2.040204
– ident: e_1_2_9_4_1
  doi: 10.1038/ncomms5213
– ident: e_1_2_9_44_1
– ident: e_1_2_9_52_1
– ident: e_1_2_9_41_1
– ident: e_1_2_9_40_1
  doi: 10.1063/1.5089550
– volume: 11
  start-page: 041011
  year: 2021
  ident: e_1_2_9_53_1
  publication-title: Phys. Rev. X
– ident: e_1_2_9_11_1
  doi: 10.1038/s41534-019-0240-1
– ident: e_1_2_9_12_1
  doi: 10.1038/s42254-021-00348-9
– ident: e_1_2_9_7_1
  doi: 10.1038/nature23879
– ident: e_1_2_9_34_1
  doi: 10.1103/PhysRevApplied.6.064007
– ident: e_1_2_9_46_1
  doi: 10.1103/RevModPhys.92.015003
– ident: e_1_2_9_10_1
  doi: 10.1038/s41534-019-0209-0
– ident: e_1_2_9_25_1
  doi: 10.1103/PhysRevLett.102.090502
– ident: e_1_2_9_49_1
  doi: 10.1103/PhysRevA.103.032605
– ident: e_1_2_9_24_1
  doi: 10.1103/PhysRevLett.100.247001
– ident: e_1_2_9_14_1
– ident: e_1_2_9_55_1
  doi: 10.1103/PhysRevA.102.062612
– ident: e_1_2_9_16_1
  doi: 10.1002/qute.201900070
– ident: e_1_2_9_23_1
  doi: 10.1103/PhysRevResearch.1.033062
– ident: e_1_2_9_39_1
  doi: 10.1103/PhysRevResearch.2.033097
– ident: e_1_2_9_26_1
  doi: 10.1103/PhysRevLett.103.110501
– volume: 11
  start-page: 021058
  year: 2021
  ident: e_1_2_9_37_1
  publication-title: Phys. Rev. X
– ident: e_1_2_9_17_1
  doi: 10.1103/PhysRevApplied.10.024052
– ident: e_1_2_9_1_1
  doi: 10.22331/q-2018-08-06-79
– ident: e_1_2_9_29_1
  doi: 10.1103/PhysRevA.96.022330
– ident: e_1_2_9_35_1
  doi: 10.1103/PhysRevApplied.10.054062
– ident: e_1_2_9_19_1
  doi: 10.1088/2058-9565/ab4eb5
– ident: e_1_2_9_31_1
  doi: 10.1103/PhysRevB.81.134507
– ident: e_1_2_9_21_1
– ident: e_1_2_9_50_1
  doi: 10.1007/BF01331938
– ident: e_1_2_9_36_1
  doi: 10.1038/s41534-018-0088-9
– ident: e_1_2_9_51_1
  doi: 10.1002/wcms.1340
– ident: e_1_2_9_38_1
  doi: 10.1103/PhysRevApplied.14.024070
– ident: e_1_2_9_5_1
  doi: 10.1088/1367-2630/18/2/023023
– ident: e_1_2_9_2_1
  doi: 10.7566/JPSJ.90.032001
– ident: e_1_2_9_15_1
– ident: e_1_2_9_54_1
  doi: 10.1021/acs.jctc.8b00943
– ident: e_1_2_9_8_1
  doi: 10.1021/acs.chemrev.8b00803
– ident: e_1_2_9_18_1
– ident: e_1_2_9_22_1
  doi: 10.1002/qute.202000063
– ident: e_1_2_9_42_1
  doi: 10.1007/978-1-84628-887-6
– ident: e_1_2_9_3_1
  doi: 10.1103/RevModPhys.94.015004
– ident: e_1_2_9_32_1
  doi: 10.1103/PhysRevLett.107.080502
– ident: e_1_2_9_45_1
SSID ssj0000502024
ssj0002169523
ssj0000502025
ssj0009609
Score 2.332929
Snippet The variational quantum eigensolver is a prominent hybrid quantum‐classical algorithm expected to impact near‐term quantum devices. They are usually based on a...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Gates (circuits)
Materials science
Parameterization
Quantum chemistry
quantum circuits
quantum technology
Qubits (quantum computing)
variational quantum algorithms
Title Parameterized Two‐Qubit Gates for Enhanced Variational Quantum Eigensolver
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fandp.202200338
https://www.proquest.com/docview/2747945133
Volume 534
WOSCitedRecordID wos000865838100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1521-3889
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009609
  issn: 0003-3804
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NSsNAEB60VfDiv1itZQ-Cp9Bks0k2x2JbPJTSSiu9hWR3gwVtpWkVPPkIPqNP4k6Spu1BBL1lYTchszO73wwz3wBcR8JxlEVjg0svNhgm5XA35IYdafBAYw9b7qTNJrxul49Gfm-tij_jhygCbmgZ6XmNBh5GSX1FGqodbeSbpJhdZfNtKFuW7aFeU9Yroiymo-FQXv-wGjvFmFqu76yd3ci_tuyxZ3OTLWkeTVrf_N7mNbbCpusIN72i2gf__7lD2M_hKWlk-nQEW2pyDLtpmqhITqDTCzGZC_md35Ukg7fp18dnfxGN5wTDcAnREJi0Jo9pWgF50H54Hmsk_YXewsUzaSH7p9Z3bUGnMGy3Brd3Rt6PwRDIiWNo5KRvLw9dNkUFc0LJLEuaEVKweVwy34xtiWU_kT423NAMpXDt2BJKqNDzI9M-g9JkOlHnQGIqtS_FNHqRnCmfc-Wm9RBcOEq5tqqAsRRvIHKycuyZ8RRkNMs0QAkFhYQqcFPMf8loOn6cWV3uVpCbaxKga-4zbHVTAZruyy9vCRrdZq8YXfxl0SXs4XOWGlOF0ny2UFewI17n42RWS9W4BuXmfXvY-Qau_OwM
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB60KnrxLdbnHgRPwWSzSTbHYlsUY6nSireQ7G6woFFso-DJn-Bv9Je4k6SpPYggHjfkQXZndr8ZvvkG4CgWjqMsmhhceonBkJTD3YgbdqzBA008bLmTN5vwOh1-e-t3SzYh1sIU-hBVwg09I9-v0cExIX0yUQ3VkTYKTlKkV9l8FuaYtiWnBnPN63Y_qBItpqMRUVkCMRk71Zharu98275Rgm3cZs_mJhsrPZr0ZPqL0yfZBJ5-B7n5KdVe-Yf_W4XlEqKSRmFTazCj0nVYyKmiYrgBQTdCQhdqPL8pSXqvj5_vH1dZPBgRTMUNiYbBpJXe5dQCcqNj8TLfSK4yvYzZA2mhAqi2ee1Fm9Bvt3qnZ0bZk8EQqItjaPSkTzAPwzZFBXMiySxLmjHKsHlcMt9MbImlP7HeOtzIjKRw7cQSSqjI82PT3oJa-piqbSAJlTqeYhrBSM6Uz7ly85oILhylXFvVwRjPbyhKwXLsm3EfFlLLNMQZCqsZqsNxdf9TIdXx45174-UKS5cdhhie-wzb3dSB5gvzy1vCRqfZrUY7f3noEBbPepdBGJx3LnZhCa8XVJk9qI2eM7UP8-JlNBg-H5RW_QXM7O_p
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB60PvDiW6xW3YPgKZhsNsnmWGyLYikpVOktJLsbLGhb-lDw5E_wN_pL3EnStD2IIB435EF2d2a_Gb75BuAyFo6jLJoYXHqJwZCUw92IG3aswQNNPGy5kzab8Fot3u36Qc4mxFqYTB-iSLihZaT-Gg1cDWVyPVcN1ZE2Ck5SpFfZfBXWmKMdLYo7s6BIs5iOxkN5AcR87BRjarm-s-C8UYBt1mTP5iab6Tya9Hr5e8vn2BycLkLc9Ixq7PzD3-3Cdg5QSTXbUXuwovr7sJESRcX4AJpBhHQuVHh-V5J03gZfH5_tadybEEzEjYkGwaTef0qJBeRRR-J5tpG0p3oRpy-kjvqfesdrGzqEh0a9c3Nr5B0ZDIGqOIbGTvr88jBoU1QwJ5LMsqQZowibxyXzzcSWWPgTa8fhRmYkhWsnllBCRZ4fm_YRlPqDvjoGklCpoymm8YvkTPmcKzetiODCUcq1VRmM2fyGIpcrx64Zz2EmtExDnKGwmKEyXBX3DzOhjh_vrMyWK8wNdhxicO4zbHZTBpouzC9vCautWlCMTv7y0AVsBrVG2Lxr3Z_CFl7OeDIVKE1GU3UG6-J10huPztMt_Q0Pdu3S
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parameterized+Two%E2%80%90Qubit+Gates+for+Enhanced+Variational+Quantum+Eigensolver&rft.jtitle=Annalen+der+Physik&rft.au=Stig+Elkj%C3%A6r+Rasmussen&rft.au=Zinner%2C+Nikolaj+Thomas&rft.date=2022-12-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0003-3804&rft.eissn=1521-3889&rft.volume=534&rft.issue=12&rft_id=info:doi/10.1002%2Fandp.202200338&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-3804&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-3804&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-3804&client=summon