Morphological profile determines the frequency of spontaneous calcium events in astrocytic processes
Astrocytes express a complex repertoire of intracellular Ca2+ transients (events) that represent a major form of signaling within individual cells and in astrocytic syncytium. These events have different spatiotemporal profiles, which are modulated by neuronal activity. Spontaneous Ca2+ events appea...
Gespeichert in:
| Veröffentlicht in: | Glia Jg. 67; H. 2; S. 246 - 262 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Hoboken, USA
John Wiley & Sons, Inc
01.02.2019
Wiley Subscription Services, Inc |
| Schlagworte: | |
| ISSN: | 0894-1491, 1098-1136, 1098-1136 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Astrocytes express a complex repertoire of intracellular Ca2+ transients (events) that represent a major form of signaling within individual cells and in astrocytic syncytium. These events have different spatiotemporal profiles, which are modulated by neuronal activity. Spontaneous Ca2+ events appear more frequently in distal astrocytic processes and independently from each other. However, little is known about the mechanisms underlying such subcellular distribution of the Ca2+ events. Here, we identify the initiation points of the Ca2+ events within the territory of single astrocytes expressing genetically encoded Ca2+ indicator GCaMP2 in culture or in hippocampal slices. We found that most of the Ca2+ events start in an optimal range of thin distal processes. Our mathematical model demonstrated that a high surface‐to‐volume of the thin processes leads to increased amplitude of baseline Ca2+ fluctuations caused by a stochastic opening of Ca2+ channels in the plasma membrane. Suprathreshold fluctuations trigger Ca2+‐induced Ca2+ release from the Ca2+ stores by activating inositol 1,4,5‐trisphosphate (IP3) receptors. In agreement with the model prediction, the spontaneous Ca2+ events frequency depended on the extracellular Ca2+ concentration. Astrocytic depolarization by high extracellular K+ increased the frequency of the Ca2+ events through activation of voltage‐gated Ca2+ channels in cultured astrocytes. Our results suggest that the morphological profile of the astrocytic processes is responsible for tuning of the Ca2+ events frequency. Therefore, structural plasticity of astrocytic processes can be directly translated into changes in astrocytic Ca2+ signaling. This may be important for both physiological and pathological astrocyte remodeling.
Majority of spontaneous Ca2+ events start in thin astrocytic processes.
Higher surface‐to‐volume ratio of the process is responsible for larger intracellular Ca2+ fluctuations.
Larger intracellular Ca2+ fluctuations trigger Ca2+‐dependent Ca2+ release. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 0894-1491 1098-1136 1098-1136 |
| DOI: | 10.1002/glia.23537 |