Solution of boundary eigenvalue problems and IBVP involving a system of PDEs using the successive linearization method

The paper illustrates a numerical technique to solve a system of three partial differential equations that govern the problem of Rayleigh‐Bénard‐Brinkman convection in a two‐dimensional porous rectangular box. As a result of linear and weakly nonlinear stability analyses of the system a boundary eig...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Zeitschrift für angewandte Mathematik und Mechanik Ročník 103; číslo 12
Hlavní autori: Narayana, M., Siddheshwar, P. G.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Weinheim Wiley Subscription Services, Inc 01.12.2023
Predmet:
ISSN:0044-2267, 1521-4001
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The paper illustrates a numerical technique to solve a system of three partial differential equations that govern the problem of Rayleigh‐Bénard‐Brinkman convection in a two‐dimensional porous rectangular box. As a result of linear and weakly nonlinear stability analyses of the system a boundary eigenvalue problem (BEVP) and an initial boundary value problem (IBVP) arise. Spatial information on the periodicity of the convection cells is first used in the system of PDEs to make it possible for the successive linearization method (SLM) to be applied. The resulting much‐simplified versions of BEVP and the IVP are then solved by direct and time multi‐stepping versions of SLM, respectively. The SLM solution of the BEVP is compared with that obtained through MATLAB routine bvp4c and the multi‐stepping‐SLM solution of the IVP is validated with that of the Runge‐Kutta‐Fehlberg (RKF45) method (using MATLAB routine ode45). The present numerical technique is found to have quadratic convergence for any desired accuracy. The paper illustrates a numerical technique to solve a system of three partial differential equations that govern the problem of Rayleigh‐Bénard‐Brinkman convection in a two‐dimensional porous rectangular box. As a result of linear and weakly nonlinear stability analyses of the system a boundary eigenvalue problem (BEVP) and an initial boundary value problem (IBVP) arise. Spatial information on the periodicity of the convection cells is first used in the system of PDEs to make it possible for the successive linearization method (SLM) to be applied.…
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0044-2267
1521-4001
DOI:10.1002/zamm.202200472