Computing branchwidth via efficient triangulations and blocks

Minimal triangulations and potential maximal cliques are the main ingredients for a number of polynomial time algorithms on different graph classes computing the treewidth of a graph. Potential maximal cliques are also the main engine of the fastest so far, exact (exponential) treewidth algorithm. B...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete Applied Mathematics Jg. 157; H. 12; S. 2726 - 2736
Hauptverfasser: Fomin, Fedor V., Mazoit, Frédéric, Todinca, Ioan
Format: Journal Article Tagungsbericht
Sprache:Englisch
Veröffentlicht: Kidlington Elsevier B.V 28.06.2009
Elsevier
Schlagworte:
ISSN:0166-218X, 1872-6771
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Minimal triangulations and potential maximal cliques are the main ingredients for a number of polynomial time algorithms on different graph classes computing the treewidth of a graph. Potential maximal cliques are also the main engine of the fastest so far, exact (exponential) treewidth algorithm. Based on the recent results of Mazoit, we define the structures that can be regarded as minimal triangulations and potential maximal cliques for branchwidth: efficient triangulations and blocks. We show how blocks can be used to construct an algorithm computing the branchwidth of a graph on n vertices in time ( 2 3 ) n ⋅ n O ( 1 ) .
ISSN:0166-218X
1872-6771
DOI:10.1016/j.dam.2008.08.009