Computing branchwidth via efficient triangulations and blocks

Minimal triangulations and potential maximal cliques are the main ingredients for a number of polynomial time algorithms on different graph classes computing the treewidth of a graph. Potential maximal cliques are also the main engine of the fastest so far, exact (exponential) treewidth algorithm. B...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Discrete Applied Mathematics Ročník 157; číslo 12; s. 2726 - 2736
Hlavní autoři: Fomin, Fedor V., Mazoit, Frédéric, Todinca, Ioan
Médium: Journal Article Konferenční příspěvek
Jazyk:angličtina
Vydáno: Kidlington Elsevier B.V 28.06.2009
Elsevier
Témata:
ISSN:0166-218X, 1872-6771
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Minimal triangulations and potential maximal cliques are the main ingredients for a number of polynomial time algorithms on different graph classes computing the treewidth of a graph. Potential maximal cliques are also the main engine of the fastest so far, exact (exponential) treewidth algorithm. Based on the recent results of Mazoit, we define the structures that can be regarded as minimal triangulations and potential maximal cliques for branchwidth: efficient triangulations and blocks. We show how blocks can be used to construct an algorithm computing the branchwidth of a graph on n vertices in time ( 2 3 ) n ⋅ n O ( 1 ) .
ISSN:0166-218X
1872-6771
DOI:10.1016/j.dam.2008.08.009