Solutions of integral equations via modified Laguerre polynomials

The Laguerre polynomial function is modified with an additional parameter and is applied to solve integral equations. First, the convolution of two modified Laguerre polynomials is developed. The dependent variables in the integral equation are assumed to be expressed by a modified Laguerre polynomi...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal of systems science Ročník 15; číslo 6; s. 661 - 672
Hlavní autori: WANG, MAW-LING, CHEN, KEWI-SHANG, CHOU, CHIH-KAO
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Taylor & Francis Group 01.01.1984
Taylor & Francis
Predmet:
ISSN:0020-7721, 1464-5319
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The Laguerre polynomial function is modified with an additional parameter and is applied to solve integral equations. First, the convolution of two modified Laguerre polynomials is developed. The dependent variables in the integral equation are assumed to be expressed by a modified Laguerre polynomial series. A set of algebraic equations is obtained from the integral equation. A recursive computational algorithm is employed to calculate the expansion coefficients. Examples are given, the results obtained from the modified Laguerre polynomials being much better than from the conventional Laguerre polynomials.
Bibliografia:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0020-7721
1464-5319
DOI:10.1080/00207728408547203