Solutions of integral equations via modified Laguerre polynomials

The Laguerre polynomial function is modified with an additional parameter and is applied to solve integral equations. First, the convolution of two modified Laguerre polynomials is developed. The dependent variables in the integral equation are assumed to be expressed by a modified Laguerre polynomi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of systems science Ročník 15; číslo 6; s. 661 - 672
Hlavní autoři: WANG, MAW-LING, CHEN, KEWI-SHANG, CHOU, CHIH-KAO
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Taylor & Francis Group 01.01.1984
Taylor & Francis
Témata:
ISSN:0020-7721, 1464-5319
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The Laguerre polynomial function is modified with an additional parameter and is applied to solve integral equations. First, the convolution of two modified Laguerre polynomials is developed. The dependent variables in the integral equation are assumed to be expressed by a modified Laguerre polynomial series. A set of algebraic equations is obtained from the integral equation. A recursive computational algorithm is employed to calculate the expansion coefficients. Examples are given, the results obtained from the modified Laguerre polynomials being much better than from the conventional Laguerre polynomials.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0020-7721
1464-5319
DOI:10.1080/00207728408547203