On the competitive ratio of the work function algorithm for the k-server problem

The k-server problem is one of the most fundamental online problems. The problem is to schedule k mobile servers to visit a sequence of points in a metric space with minimum total mileage. The k-server conjecture of Manasse, McGeogh, and Sleator states that there exists a k-competitive online algori...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical computer science Jg. 324; H. 2; S. 337 - 345
Hauptverfasser: Bartal, Yair, Koutsoupias, Elias
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Amsterdam Elsevier B.V 20.09.2004
Elsevier
Schlagworte:
ISSN:0304-3975, 1879-2294
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The k-server problem is one of the most fundamental online problems. The problem is to schedule k mobile servers to visit a sequence of points in a metric space with minimum total mileage. The k-server conjecture of Manasse, McGeogh, and Sleator states that there exists a k-competitive online algorithm. The conjecture has been open for over 15 years. The top candidate online algorithm for settling this conjecture is the work function algorithm ( WFA) which was shown to have competitive ratio at most 2 k−1. In this paper, we lend support to the conjecture that WFA is in fact k-competitive by proving that it achieves this ratio in several special metric spaces: the line, the star, and all metric spaces with k+2 points.
Bibliographie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0304-3975
1879-2294
DOI:10.1016/j.tcs.2004.06.001