Decomposition of a Multiobjective Optimization Problem Into a Number of Simple Multiobjective Subproblems

This letter suggests an approach for decomposing a multiobjective optimization problem (MOP) into a set of simple multiobjective optimization subproblems. Using this approach, it proposes MOEA/D-M2M, a new version of multiobjective optimization evolutionary algorithm-based decomposition. This propos...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on evolutionary computation Ročník 18; číslo 3; s. 450 - 455
Hlavní autoři: Liu, Hai-Lin, Gu, Fangqing, Zhang, Qingfu
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY IEEE 01.06.2014
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1089-778X, 1941-0026
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This letter suggests an approach for decomposing a multiobjective optimization problem (MOP) into a set of simple multiobjective optimization subproblems. Using this approach, it proposes MOEA/D-M2M, a new version of multiobjective optimization evolutionary algorithm-based decomposition. This proposed algorithm solves these subproblems in a collaborative way. Each subproblem has its own population and receives computational effort at each generation. In such a way, population diversity can be maintained, which is critical for solving some MOPs. Experimental studies have been conducted to compare MOEA/D-M2M with classic MOEA/D and NSGA-II. This letter argues that population diversity is more important than convergence in multiobjective evolutionary algorithms for dealing with some MOPs. It also explains why MOEA/D-M2M performs better.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1089-778X
1941-0026
DOI:10.1109/TEVC.2013.2281533