Stability Analysis of Impulsive Fractional Difference Equations

We revisit motivation of the fractional difference equations and some recent applications to image encryption. Then stability of impulsive fractional difference equations is investigated in this paper. The fractional sum equation is considered and impulsive effects are introduced into discrete fract...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Fractional calculus & applied analysis Ročník 21; číslo 2; s. 354 - 375
Hlavní autoři: Wu, Guo–Cheng, Baleanu, Dumitru
Médium: Journal Article
Jazyk:angličtina
Vydáno: Warsaw Versita 01.04.2018
De Gruyter
Nature Publishing Group
Témata:
ISSN:1311-0454, 1314-2224
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We revisit motivation of the fractional difference equations and some recent applications to image encryption. Then stability of impulsive fractional difference equations is investigated in this paper. The fractional sum equation is considered and impulsive effects are introduced into discrete fractional calculus. A class of impulsive fractional difference equations are proposed. A discrete comparison principle is given and asymptotic stability of nonlinear fractional difference equation are discussed. Finally, an impulsive Mittag–Leffler stability is defined. The numerical result is provided to support the analysis.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1311-0454
1314-2224
DOI:10.1515/fca-2018-0021