Stability Analysis of Impulsive Fractional Difference Equations
We revisit motivation of the fractional difference equations and some recent applications to image encryption. Then stability of impulsive fractional difference equations is investigated in this paper. The fractional sum equation is considered and impulsive effects are introduced into discrete fract...
Uloženo v:
| Vydáno v: | Fractional calculus & applied analysis Ročník 21; číslo 2; s. 354 - 375 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Warsaw
Versita
01.04.2018
De Gruyter Nature Publishing Group |
| Témata: | |
| ISSN: | 1311-0454, 1314-2224 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We revisit motivation of the fractional difference equations and some recent applications to image encryption. Then stability of impulsive fractional difference equations is investigated in this paper. The fractional sum equation is considered and impulsive effects are introduced into discrete fractional calculus. A class of impulsive fractional difference equations are proposed. A discrete comparison principle is given and asymptotic stability of nonlinear fractional difference equation are discussed. Finally, an impulsive Mittag–Leffler stability is defined. The numerical result is provided to support the analysis. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1311-0454 1314-2224 |
| DOI: | 10.1515/fca-2018-0021 |