Stability Analysis of Impulsive Fractional Difference Equations

We revisit motivation of the fractional difference equations and some recent applications to image encryption. Then stability of impulsive fractional difference equations is investigated in this paper. The fractional sum equation is considered and impulsive effects are introduced into discrete fract...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fractional calculus & applied analysis Jg. 21; H. 2; S. 354 - 375
Hauptverfasser: Wu, Guo–Cheng, Baleanu, Dumitru
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Warsaw Versita 01.04.2018
De Gruyter
Nature Publishing Group
Schlagworte:
ISSN:1311-0454, 1314-2224
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We revisit motivation of the fractional difference equations and some recent applications to image encryption. Then stability of impulsive fractional difference equations is investigated in this paper. The fractional sum equation is considered and impulsive effects are introduced into discrete fractional calculus. A class of impulsive fractional difference equations are proposed. A discrete comparison principle is given and asymptotic stability of nonlinear fractional difference equation are discussed. Finally, an impulsive Mittag–Leffler stability is defined. The numerical result is provided to support the analysis.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1311-0454
1314-2224
DOI:10.1515/fca-2018-0021