Approximations for standard normal distribution function and its invertible
In this paper, we introduce a new approximation of the cumulative distribution function of the standard normal distribution based on Tocher's approximation. Also, we assess the quality of the new approximation using two criteria namely the maximum absolute error and the mean absolute error. The...
Uloženo v:
| Vydáno v: | Journal of algorithms & computational technology Ročník 19 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
SAGE Publishing
01.03.2025
|
| ISSN: | 1748-3018, 1748-3026 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, we introduce a new approximation of the cumulative distribution function of the standard normal distribution based on Tocher's approximation. Also, we assess the quality of the new approximation using two criteria namely the maximum absolute error and the mean absolute error. The approximation is expressed in closed form and it produces a maximum absolute error of 4.43 × 10 − 10 , while the mean absolute error is 9.62 × 10 − 11 . In addition, we propose an approximation of the inverse cumulative function of the standard normal distribution based on Polya approximation and compare the accuracy of our findings with some of the existing approximations. The results show that our approximations surpass other the existing ones based on the aforementioned accuracy measures. |
|---|---|
| ISSN: | 1748-3018 1748-3026 |
| DOI: | 10.1177/17483026251322100 |