Approximations for standard normal distribution function and its invertible

In this paper, we introduce a new approximation of the cumulative distribution function of the standard normal distribution based on Tocher's approximation. Also, we assess the quality of the new approximation using two criteria namely the maximum absolute error and the mean absolute error. The...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of algorithms & computational technology Ročník 19
Hlavní autoři: Eidous, Omar M., Al-Rawwash, Mohammad Y.
Médium: Journal Article
Jazyk:angličtina
Vydáno: SAGE Publishing 01.03.2025
ISSN:1748-3018, 1748-3026
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we introduce a new approximation of the cumulative distribution function of the standard normal distribution based on Tocher's approximation. Also, we assess the quality of the new approximation using two criteria namely the maximum absolute error and the mean absolute error. The approximation is expressed in closed form and it produces a maximum absolute error of 4.43 × 10 − 10 , while the mean absolute error is 9.62 × 10 − 11 . In addition, we propose an approximation of the inverse cumulative function of the standard normal distribution based on Polya approximation and compare the accuracy of our findings with some of the existing approximations. The results show that our approximations surpass other the existing ones based on the aforementioned accuracy measures.
ISSN:1748-3018
1748-3026
DOI:10.1177/17483026251322100