Generalized Krein Formula, Determinants, and Selberg Zeta Function in Even Dimension

For a class of even dimensional asymptotically hyperbolic (AH) manifolds, we develop a generalized Birman-Krein theory to study scattering asymptotics and, when the curvature is constant, to analyze the Selberg zeta function. The main objects we construct for an AH manifold (X, g) are, on the one ha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of mathematics Jg. 131; H. 5; S. 1359 - 1417
1. Verfasser: Guillarmou, Colin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Baltimore, MD Johns Hopkins University Press 01.10.2009
Schlagworte:
ISSN:0002-9327, 1080-6377, 1080-6377
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract For a class of even dimensional asymptotically hyperbolic (AH) manifolds, we develop a generalized Birman-Krein theory to study scattering asymptotics and, when the curvature is constant, to analyze the Selberg zeta function. The main objects we construct for an AH manifold (X, g) are, on the one hand, a natural spectral function ξ for the Laplacian$\Delta _g $, which replaces the counting function of the eigenvalues in this infinite volume case, and on the other hand the determinant of the scattering operator$S_X (\lambda )$of$\Delta _g $on X. Both need to be defined through regularized functional: renormalized trace on the bulk X and regularized determinant on the conformai infinity ($(\partial {\bar X},[h_0 ])$). We show that det$S_X (\lambda )$is meromorphic in$\lambda \in \mathbb{C}$, with divisors given by resonance multiplicities and dimensions of kernels of GJMS conformal Laplacians ($(P_k )_{k \in \mathbb{N}} $of$(\partial {\bar X},[h_0 ])$)-Moreover ξ(z) is proved to be the phase of det$S_X (\frac{n} {2} + iz)$on the essential spectrum$\{ z \in \mathbb{R}^ + \} $. Applying this theory to convex co-compact quotients$X = \Gamma \backslash \mathbb{H}^{n + 1} $of hyperbolic space$\mathbb{H}^{n + 1} $, we obtain the functional equation$Z(\lambda )/Z(n - \lambda ) = (\det S_{\mathbb{H}^{n + 1} } (\lambda ))^{x(X)} /\det S_X (\lambda )$for Selberg zeta function$Z(\lambda )$of X, where X(X) is the Euler characteristic of X. This describes the poles and zeros of Z(λ), computes det$P_k $in term of$Z(\frac{n}{2} - k)/Z(\frac{n} {2} + k)$and implies a sharp Weyl asymptotic for ξ(z).
AbstractList For a class of even dimensional asymptotically hyperbolic (AH) manifolds, we develop a generalized Birman-Krein theory to study scattering asymptotics and, when the curvature is constant, to analyze the Selberg zeta function. The main objects we construct for an AH manifold (X, g) are, on the one hand, a natural spectral function ξ for the Laplacian Δg, which replaces the counting function of the eigenvalues in this infinite volume case, and on the other hand the determinant of the scattering operator S^sub X^(λ) of Δg on X. Both need to be defined through regularized functional: renormalized trace on the bulk X and regularized determinant on the conformal infinity (..., [h^sub 0^]). We show that det S^sub X^(λ) is meromorphic in λ ∈ C, with divisors given by resonance multiplicities and dimensions of kernels of GJMS conformal Laplacians (P^sub k^)^sub k∈N^ of (..., [h^sub 0^]). Moreover ξ(z) is proved to be the phase of det ... on the essential spectrum {z ∈ R^sup +^}. Applying this theory to convex co-compact quotients X = Γ\H^sup n+1^ of hyperbolic space H^sup n+1^, we obtain the functional equation Z(λ)/Z(n - λ) = (det S^sub Hn+1^(λ))^sup χ(X)^ / det S^sub X^(λ) for Selberg zeta function Z(λ) of X, where ^sub χ^(X) is the Euler characteristic of X. This describes the poles and zeros of Z(λ), computes det P^sub k^ in term of ... and implies a sharp Weyl asymptotic for ξ(z). [PUBLICATION ABSTRACT]
For a class of even dimensional asymptotically hyperbolic (AH) manifolds, we develop a generalized Birman-Krein theory to study scattering asymptotics and, when the curvature is constant, to analyze the Selberg zeta function. The main objects we construct for an AH manifold $(X,g)$ are, on the one hand, a natural spectral function $\xi$ for the Laplacian $\Delta_g$, which replaces the counting function of the eigenvalues in this infinite volume case, and on the other hand the determinant of the scattering operator $S_X(\lambda)$ of $\Delta_g$ on $X$. Both need to be defined through regularized functional: renormalized trace on the bulk $X$ and regularized determinant on the conformal infinity $(\partial\bar{X},[h_0])$. We show that $\det S_X(\lambda)$ is meromorphic in $\lambda\in{\Bbb C}$, with divisors given by resonance multiplicities and dimensions of kernels of GJMS conformal Laplacians $(P_k)_{k\in{\Bbb N}}$ of $(\partial\bar{X},[h_0])$. Moreover $\xi(z)$ is proved to be the phase of $\det S_X({n\over2}+iz)$ on the essential spectrum $\{z\in{\Bbb R}^+\}$. Applying this theory to convex co-compact quotients $X=\Gamma\backslash{\Bbb H}^{n+1}$ of hyperbolic space ${\Bbb H}^{n+1}$, we obtain the functional equation $Z(\lambda)/Z(n-\lambda)=(\det S_{{\Bbb H}^{n+1}}(\lambda))^{\chi(X)}/\det S_X(\lambda)$ for Selberg zeta function $Z(\lambda)$ of $X$, where $\chi(X)$ is the Euler characteristic of $X$. This describes the poles and zeros of $Z(\lambda)$, computes $\det P_k$ in term of $Z({n\over2}-k)/Z({n\over2}+k)$ and implies a sharp Weyl asymptotic for~$\xi(z)$.
For a class of even dimensional asymptotically hyperbolic (AH) manifolds, we develop a generalized Birman-Krein theory to study scattering asymptotics and, when the curvature is constant, to analyze the Selberg zeta function. The main objects we construct for an AH manifold (X, g) are, on the one hand, a natural spectral function ξ for the Laplacian$\Delta _g $, which replaces the counting function of the eigenvalues in this infinite volume case, and on the other hand the determinant of the scattering operator$S_X (\lambda )$of$\Delta _g $on X. Both need to be defined through regularized functional: renormalized trace on the bulk X and regularized determinant on the conformai infinity ($(\partial {\bar X},[h_0 ])$). We show that det$S_X (\lambda )$is meromorphic in$\lambda \in \mathbb{C}$, with divisors given by resonance multiplicities and dimensions of kernels of GJMS conformal Laplacians ($(P_k )_{k \in \mathbb{N}} $of$(\partial {\bar X},[h_0 ])$)-Moreover ξ(z) is proved to be the phase of det$S_X (\frac{n} {2} + iz)$on the essential spectrum$\{ z \in \mathbb{R}^ + \} $. Applying this theory to convex co-compact quotients$X = \Gamma \backslash \mathbb{H}^{n + 1} $of hyperbolic space$\mathbb{H}^{n + 1} $, we obtain the functional equation$Z(\lambda )/Z(n - \lambda ) = (\det S_{\mathbb{H}^{n + 1} } (\lambda ))^{x(X)} /\det S_X (\lambda )$for Selberg zeta function$Z(\lambda )$of X, where X(X) is the Euler characteristic of X. This describes the poles and zeros of Z(λ), computes det$P_k $in term of$Z(\frac{n}{2} - k)/Z(\frac{n} {2} + k)$and implies a sharp Weyl asymptotic for ξ(z).
Author Guillarmou, Colin
Author_xml – sequence: 1
  givenname: Colin
  surname: Guillarmou
  fullname: Guillarmou, Colin
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21990898$$DView record in Pascal Francis
BookMark eNptkUFr3DAQhUVJoZu0l9wLptBLiLdjy5LsY0mySWmgh6SXXMRYHhUbW04lOZD--sps2EDpSUh8b_TmvWN25GZHjJ0WsC244F9wmLawBVDFG7YpoIZccqWO2AYAyrzhpXrHjkMY0hUUlBt2f02OPI79H-qy7556l-1mPy0jnmeXFMlPvUMXw3mGrsvuaGzJ_8oeKGK2W5yJ_eyypLl6Ipdd9hO5kF7es7cWx0AfXs4T9nN3dX9xk9_-uP528fU2N1yImNvWiroQtrOmalopK2wsobGkOugklrZW1CB2dSdaIluUHFswMm2RIKNqfsI-7ec--vn3QiHqYV68S1_qkktRlUrKBH1-gTAYHK1HZ_qgH30_oX_WZdE0UDfrsLM9Z_wcgid7QArQa7g6hatBr-EmGP6BTR9xTSN67Mf_S6qD2YFMnJZAr355oTiX-m7tbK0MGpEqkqutj3vZEOLsD54q4HUtBOd_AUtlmWk
CODEN AJMAAN
CitedBy_id crossref_primary_10_1016_j_geomphys_2015_07_001
crossref_primary_10_1007_s00220_013_1809_8
crossref_primary_10_1088_1751_8113_44_11_115402
crossref_primary_10_1007_JHEP02_2019_188
crossref_primary_10_1016_j_aim_2010_05_004
crossref_primary_10_1007_s12220_010_9149_9
crossref_primary_10_1007_JHEP11_2017_082
crossref_primary_10_1080_17476933_2013_805412
ContentType Journal Article
Copyright Copyright 2009 The Johns Hopkins University Press
Copyright © 2008 The Johns Hopkins University Press.
2015 INIST-CNRS
Copyright Johns Hopkins University Press Oct 2009
Copyright_xml – notice: Copyright 2009 The Johns Hopkins University Press
– notice: Copyright © 2008 The Johns Hopkins University Press.
– notice: 2015 INIST-CNRS
– notice: Copyright Johns Hopkins University Press Oct 2009
DBID AAYXX
CITATION
IQODW
7XB
8AF
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
L6V
M2O
M2P
M7S
MBDVC
P5Z
P62
PADUT
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
S0X
DOI 10.1353/ajm.0.0071
DatabaseName CrossRef
Pascal-Francis
ProQuest Central (purchase pre-March 2016)
ProQuest STEM Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Research Library China
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
SIRS Editorial
DatabaseTitle CrossRef
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SIRS Editorial
ProQuest Computer Science Collection
ProQuest AP Science
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Research Library China
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Research Library Prep
CrossRef

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1080-6377
EndPage 1417
ExternalDocumentID 1878042931
21990898
10_1353_ajm_0_0071
317336_S1080637709500068
40388553
GroupedDBID -~X
0R~
23M
2AX
4.4
5GY
5VS
6J9
706
709
70B
8AF
8FE
8FG
8FW
AAGGK
AAHKB
AAHKG
AAMZP
AAVNP
AAWIL
AAXGD
AAYOK
ABAWQ
ABBHK
ABECW
ABEZY
ABFAN
ABJCF
ABPFR
ABPPZ
ABPQH
ABXSQ
ABYWD
ACDWB
ACGFO
ACGOD
ACHIS
ACHJO
ACIWK
ACMTB
ACNCT
ACTMH
ACUBG
ACYXD
ADFRT
ADHJG
ADODI
ADPSH
ADTUW
ADULT
ADWTG
AEHYH
AENEX
AERNI
AEUPB
AFKRA
AFNCV
AFVYC
AFXHP
AGLNM
AIHAF
AIHXW
ALMA_UNASSIGNED_HOLDINGS
ALRMG
AMBIC
AMVHM
ANBFE
AOQIW
ARAPS
AZQEC
BENPR
BGLVJ
BKOMP
BPHCQ
CAG
CCPQU
COF
CS3
D0L
DQDLB
DSRWC
DWQXO
EBS
ECEWR
EJD
FEDTE
FOMLG
FVMVE
GNUQQ
GUQSH
H13
HCIFZ
HQ6
HVGLF
H~9
IPSME
JAAYA
JAS
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
K6V
K7-
L6V
L7B
LU7
M2O
M2P
M7S
MBR
MBU
MSI
MUA
MUP
MUS
N9A
O9-
OK1
P-O
P2P
P62
PADUT
PHGZM
PHGZT
PQQKQ
PRG
PROAC
PTHSS
RC9
ROL
S0X
SA0
TN5
VQG
WH7
YF5
3V.
692
6OB
AAFWJ
AAYJJ
ABCQX
ABEFU
ABTAH
ABYAD
ACMKW
ACTWD
ADACV
AELPN
AGHSJ
AHJEN
AI.
AS~
BES
BKUOZ
F20
HGD
IAO
IEA
IGS
IOF
ITC
JSODD
KQ8
MVM
NHB
RNS
VH1
VOH
YYP
ZCG
ZY4
AAYXX
ABUFD
AFFHD
AFQQW
CITATION
PAQYV
PQGLB
IQODW
7XB
JQ2
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c355t-fbf5815fdfc49b664a9feacfe7d0d6a2f87e9aad8d5beef123ab0c6932acfc783
IEDL.DBID M2P
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000270438900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0002-9327
1080-6377
IngestDate Mon Nov 10 02:56:03 EST 2025
Mon Jul 21 09:13:16 EDT 2025
Sat Nov 29 03:37:16 EST 2025
Tue Nov 18 22:16:43 EST 2025
Thu Jul 04 04:49:31 EDT 2024
Thu Jul 03 21:13:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Spectral function
Zero
Determinant
Functional equation
Eigenvalue
Scattering operator
Mathematics
Laplacian
Kernel method
Scattering theory
Functional
Kernels
Trace
Manifold
Multiplicity
Counting function
Zeta function
Generalized manifold
Resonance
Asymptotic approximation
Curvature
Quotient
Pole
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c355t-fbf5815fdfc49b664a9feacfe7d0d6a2f87e9aad8d5beef123ab0c6932acfc783
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 236542766
PQPubID 41735
PageCount 59
ParticipantIDs proquest_journals_236542766
pascalfrancis_primary_21990898
crossref_primary_10_1353_ajm_0_0071
crossref_citationtrail_10_1353_ajm_0_0071
projectmuse_journals_317336_S1080637709500068
jstor_primary_40388553
PublicationCentury 2000
PublicationDate 2009-10-01
PublicationDateYYYYMMDD 2009-10-01
PublicationDate_xml – month: 10
  year: 2009
  text: 2009-10-01
  day: 01
PublicationDecade 2000
PublicationPlace Baltimore, MD
PublicationPlace_xml – name: Baltimore, MD
– name: Baltimore
PublicationTitle American journal of mathematics
PublicationYear 2009
Publisher Johns Hopkins University Press
Publisher_xml – name: Johns Hopkins University Press
SSID ssj0000702
Score 1.9280176
Snippet For a class of even dimensional asymptotically hyperbolic (AH) manifolds, we develop a generalized Birman-Krein theory to study scattering asymptotics and,...
For a class of even dimensional asymptotically hyperbolic (AH) manifolds, we develop a generalized Birman-Krein theory to study scattering asymptotics and,...
SourceID proquest
pascalfrancis
crossref
projectmuse
jstor
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1359
SubjectTerms Algebra
Continuous spectra
Coordinate systems
Differential operators
Dimensional analysis
Dynamical systems
Exact sciences and technology
Fourier transformations
General mathematics
General, history and biography
Infinity
Laplacians
Mathematical analysis
Mathematical functions
Mathematical manifolds
Mathematical problems
Mathematics
Number theory
Numerical analysis
Numerical analysis. Scientific computation
Numerical linear algebra
Riemann manifold
Sciences and techniques of general use
Several complex variables and analytic spaces
Theory
Topological manifolds
Title Generalized Krein Formula, Determinants, and Selberg Zeta Function in Even Dimension
URI https://www.jstor.org/stable/40388553
https://muse.jhu.edu/article/317336
https://www.proquest.com/docview/236542766
Volume 131
WOSCitedRecordID wos000270438900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1080-6377
  dateEnd: 20200831
  omitProxy: false
  ssIdentifier: ssj0000702
  issn: 0002-9327
  databaseCode: P5Z
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database (ProQuest)
  customDbUrl:
  eissn: 1080-6377
  dateEnd: 20200831
  omitProxy: false
  ssIdentifier: ssj0000702
  issn: 0002-9327
  databaseCode: K7-
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1080-6377
  dateEnd: 20200831
  omitProxy: false
  ssIdentifier: ssj0000702
  issn: 0002-9327
  databaseCode: M7S
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1080-6377
  dateEnd: 20200831
  omitProxy: false
  ssIdentifier: ssj0000702
  issn: 0002-9327
  databaseCode: BENPR
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1080-6377
  dateEnd: 20200831
  omitProxy: false
  ssIdentifier: ssj0000702
  issn: 0002-9327
  databaseCode: M2O
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1080-6377
  dateEnd: 20200831
  omitProxy: false
  ssIdentifier: ssj0000702
  issn: 0002-9327
  databaseCode: M2P
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RlgMceFdsCytLcEGqaTZO7OSEUtYLqzYm2geq9hLlZakVbB9Z-P2Mvd6UFYgLiuRLJpHicWa-eL58A_DWLz08tKZ-3HjUSJzTCFEIrezPaaw2Ela22YRQKjo_jzPHzWkdrXITE22grq8qs0d-7DPTWklw_uH6hpqmUaa46jpo7MAeApuBYXSlfnYXiIXnb9AvwhTh1ElZyI6Ly-_vDadLDLby0ZqSaPiRRYtTpNe9Lba3Rf4I2jYTjR7_5zM8gUcOgpJkvWaewr1m-Qwepp1-a_scZo7RNl7IITmdyLEi-LWYzs-SIzKUiIDTsUrUbHpEEjUkU3l2IiefyELOEjKaK8tLIXiN_CoVGY5TqUzIfgHzkZx9_Exd_wVaIQpZUV3qMBqEutZVEJecB0WsMU7rRtRezQtfR6KJi6KO6rBsGo05sCi9iuNUo1ElIrYPu8urZfMSiNZNUIdFicsgCHxflIwXJX6JeUGFdym9HrzbeCGvnDi56ZHxLbcVt5Dl6LHcKJmKQQ_edLbXa0mOv1rtW2d2JoHRvQlD1oP-lnc7A4zdpgga9YD-5u7cvdNtjkiLMZ5PDSuTMyEQnJpkj_aHG2_fGXeuPvjn2UN4YMtTlh34CnZXtz-a13C_-rm6aG_7sHciVTbpw86poH2zuL_YMTOjmOKYhYtfc-r6nA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQceFcshWIJOCA1NGsncXJAKBAvjXYTVd0sqnoJedgSCLalWUD8KP4jY-dRViBuPaAcM7GU-PPMOPP5G4CntLTxUsqigbQtLXFu-ZiFWJU5nMZqLWFlmk3wNPWPjoKDDfjZn4XRtMreJxpHXZ9U-h_5HmW6tRL3vFenXyzdNEoXV_sOGi0qpvLHd9yxNS_jCKf3GaUTkb3Zt7qmAlaFoXVlqVK5_thVtaqcoPQ8pwgUOh8leW3XXkGVz2VQFLVfu6WUCh17UdqVh2kOGlXcZzjuJbjsaGExzRSkB-eOn9u0z7bRnndqqMxle8XHzy80h4yP1-JfS4HUfMyiwSlRbS-N9d8wfwQJE_kmN_-zb3YLbnQpNgnbNXEbNuTyDlxPBn3a5i5kHWMvPhYRmR6KOCW4G04Ws3CXRAIz_CROwzSb75IwjchczF6Lw7fkWGQhmSxSw7sh-Ix4J1ISxYlIdUi6B4sLea0t2FyeLOV9IEpJp3aLEmHuOJTyknlFiTtN26lwlNIewfN-1vOqE1_XPUA-5aai6LIcEZJrpVY-HsGTwfa0lRz5q9WWAc9g4mhdH9dlI9hZQ9NggLFJF3n9EVi_wSvvfFaTYybJmJfPNevUY5xj8q2TGbTf7tF1bjxA68E_7z6Gq_tZMstncTrdhmumFGeYkA9hc3X2VT6CK9W31YfmbMcsJQLvLxqHvwDgtFhd
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VghAceFcNhbIScECqieO1vfYBIYM3YCVZRU1SVbkYP3alIkhLHUD8NP4ds-tHiUDcekA-erySvd_OzHq-_QbgmZPbeCllOaG0LS1xbgWYhViFOZxGSy1hZZpNMCGC4-NwugU_27MwmlbZ-kTjqMvTQv8j7ztUt1Zivt9XDStiGg9fn32xdAMpXWhtu2nUCBnJH99x91a9SmKc6ueOM-Tzt--tpsGAVWCYXVsqV14w8FSpCjfMfd_NQoWOSElW2qWfOSpgMsyyMii9XEqFTj7L7cLHlAeNChZQHPcKXGW4xdRswqm3vAgCzHbazBvtWaOMSj3azz5-fqn5ZGywEQtrOqTmZmYVTo-q-2ps_pL5I2CYKDi8_R9_vztwq0m9SVSvlbuwJVf34Oak062t7sO8YfIlSx6T0SFPBMFd8mQxjg5IzDHznyQiEvPZAYlETGZ8_IYfviNLPo_IcCEMH4fgM_yICxInEy50qHoAi0t5rR3YXp2u5C4QpaRbelmO8Hddx2E59bMcd6C2W-Aoud2DFy0C0qIRZde9QT6lptLo0RTRkmoFVzbowdPO9qyWIvmr1Y4BUmfiar0fz6M92N9AVmeAMUsXf4MeWL9BLW18WZVihkmpn840G9WnjGFSrpMctN9rkXZh3MHs4T_vPoHrCL90nIjRHtwwFTpDkHwE2-vzr_IxXCu-rU-q832zqgh8uGwY_gItRGFJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generalized+Krein+Formula%2C+Determinants%2C+and+Selberg+Zeta+Function+in+Even+Dimension&rft.jtitle=American+journal+of+mathematics&rft.au=Guillarmou%2C+Colin&rft.date=2009-10-01&rft.pub=Johns+Hopkins+University+Press&rft.issn=0002-9327&rft.eissn=1080-6377&rft.volume=131&rft.issue=5&rft.spage=1359&rft.epage=1417&rft_id=info:doi/10.1353%2Fajm.0.0071&rft.externalDocID=40388553
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-9327&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-9327&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-9327&client=summon