Accelerated parallel and distributed algorithm using limited internal memory for nonnegative matrix factorization
Nonnegative matrix factorization (NMF) is a powerful technique for dimension reduction, extracting latent factors and learning part-based representation. For large datasets, NMF performance depends on some major issues such as fast algorithms, fully parallel distributed feasibility and limited inter...
Uložené v:
| Vydané v: | Journal of global optimization Ročník 68; číslo 2; s. 307 - 328 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.06.2017
Springer Springer Nature B.V |
| Predmet: | |
| ISSN: | 0925-5001, 1573-2916 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
Buďte prvý, kto okomentuje tento záznam!